期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于人工兔算法的复杂输水系统泵阀联合优化调控
1
作者 郝梦园 张雷克 +2 位作者 刘小莲 王雪妮 田雨 《浙江大学学报(工学版)》 北大核心 2025年第10期2115-2124,共10页
在泵站加压提水结合重力输水系统中,单个水利设施调控难以兼顾全线安全,为此以连续停机工况为例,综合考虑机组停机间隔、泵后阀关闭规律及末端控制阀调节规律对管道系统压力极值及高位水池水位波动的影响,建立耦合水力计算模型的泵阀联... 在泵站加压提水结合重力输水系统中,单个水利设施调控难以兼顾全线安全,为此以连续停机工况为例,综合考虑机组停机间隔、泵后阀关闭规律及末端控制阀调节规律对管道系统压力极值及高位水池水位波动的影响,建立耦合水力计算模型的泵阀联合优化调控模型,提出基于非支配排序及拥挤度距离的非支配排序人工兔优化算法(NSARO).超体积指标(HV)验证结果表明,NSARO在泵阀联合优化调控中具有良好的收敛性.利用灰色关联度分析法(GRA)对所获Pareto解集进行方案优选.以实际工程为例,利用NSARO-GRA优化求解决策方法得出优选方案,相较于现状方案,管道系统的最大正压力水头、最大负压力水头以及高位水池的水位波动值分别降低了13.57、0.29和5.79m. 展开更多
关键词 泵阀联合调控 多目标优化 有压输水系统 人工优化算法 灰色关联度分析法(GRA)
在线阅读 下载PDF
基于改进人工兔优化算法的分批调度问题研究
2
作者 亓祥波 王亚双 +1 位作者 佟年 宋岩 《制造技术与机床》 北大核心 2025年第8期179-191,共13页
充分考虑实际生产过程中的批量生产形式,构建以最小最大完工时间为目标的置换流水车间分批调度问题的数学模型,并提出一种改进的人工兔优化算法。在编码阶段,采用最小位置值(smallest position value,SPV)规则实现连续解向离散解的转变... 充分考虑实际生产过程中的批量生产形式,构建以最小最大完工时间为目标的置换流水车间分批调度问题的数学模型,并提出一种改进的人工兔优化算法。在编码阶段,采用最小位置值(smallest position value,SPV)规则实现连续解向离散解的转变;在解码阶段,采用动态策略对工件进行分批;通过NEH启发式规则改善初始种群的质量;引入差分进化算子提高解的多样性;提出基于交换和逆序的局部搜索策略增强算法跳出局部最优解的能力。将所提算法和其他对比算法对不同规模的算例进行求解,通过消融实验、对比实验、统计检验等证明了算法的有效性。最后对某汽车外饰件厂喷涂车间排产问题进行求解,求解结果优于其他对比算法,进一步证明了所提算法的有效性。 展开更多
关键词 置换流水车间 分批调度 动态分批 人工优化算法 差分进化算子
在线阅读 下载PDF
基于多策略改进人工兔优化算法的三维无人机路径规划方法 被引量:2
3
作者 王文涛 叶晨 田军 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3780-3797,共18页
三维无人机路径规划问题旨在满足安全性条件的前提下为无人机规划出一条最佳的飞行路径.本文通过数学建模的方式构建出无人机路径规划的成本函数,从而无人机路径规划问题转化为多约束的优化问题,并使用元启发式算法来求解该问题.针对人... 三维无人机路径规划问题旨在满足安全性条件的前提下为无人机规划出一条最佳的飞行路径.本文通过数学建模的方式构建出无人机路径规划的成本函数,从而无人机路径规划问题转化为多约束的优化问题,并使用元启发式算法来求解该问题.针对人工兔优化算法收敛慢以及易陷入局部最优的缺陷,本文开发了一种基于Levy飞行、自适应柯西变异以及精英群遗传策略改进的人工兔优化算法(Artificial Rabbit Optimization algorithm based on Levy flight,adaptive Cauchy mutation,and elite population Genetic strategy,LCGARO).将LCGARO与6个经典和先进的元启发式算法在29个CEC2017测试函数和6个复杂度不同的三维无人机路径规划地形场景中进行多方面对比实验.对比实验结果证明,在CEC2017测试函数的对比实验中,本文提出的LCGARO算法在22个测试函数中具有更优的寻优精度.在无人机路径规划实验中,LCGARO算法在5个地形场景中能够规划出总成本函数值最小的飞行路径. 展开更多
关键词 三维无人机路径规划 人工优化算法 Levy飞行 自适应柯西变异 精英群遗传策略 元启发式算法
在线阅读 下载PDF
动态透镜成像学习人工兔优化算法及应用 被引量:3
4
作者 王伟 龙文 《广西科学》 CAS 北大核心 2023年第4期735-744,共10页
针对基本人工兔优化(Artificial Rabbits Optimization, ARO)算法在解决复杂优化问题时存在收敛慢、精度不高和容易陷入局部最优等缺陷,本文提出一种改进的ARO算法(记为IARO算法)。IARO算法中的基于正弦函数的非线性递减能量因子能够帮... 针对基本人工兔优化(Artificial Rabbits Optimization, ARO)算法在解决复杂优化问题时存在收敛慢、精度不高和容易陷入局部最优等缺陷,本文提出一种改进的ARO算法(记为IARO算法)。IARO算法中的基于正弦函数的非线性递减能量因子能够帮助算法实现从探索阶段到开发阶段的良好过渡,从而提高算法的收敛速度和解的质量。此外,为了提高算法跳出局部最优的概率,IARO算法引入了一种动态透镜成像学习策略。为了证明IARO算法的优越性,首先选取了6个基准测试函数进行数值实验,然后用其求解2个工程设计优化问题和1个包括15个数据集的特征选择问题,并与灰狼优化(GWO)算法、鲸鱼优化算法(WOA)、正弦余弦算法(SCA)和基本ARO算法进行对比。结果表明,IARO算法有着比其他对比算法更优越的性能。 展开更多
关键词 人工优化算法 动态透镜成像学习策略 工程优化 特征选择 函数优化
在线阅读 下载PDF
多策略人工兔算法优化粒子滤波的SLAM精度研究 被引量:1
5
作者 杨光永 蔡艳 +1 位作者 陈旭东 徐天奇 《重庆理工大学学报(自然科学)》 北大核心 2023年第11期257-268,共12页
针对传统粒子滤波算法(particle filter,PF)重采样导致粒子贫乏,以及需增加粒子数提高估计精度的问题,提出一种基于多策略人工兔算法优化的粒子重组滤波算法。引入中垂线算法提高人工兔算法收敛速度,通过其觅食与隐藏机制,使得最优粒子... 针对传统粒子滤波算法(particle filter,PF)重采样导致粒子贫乏,以及需增加粒子数提高估计精度的问题,提出一种基于多策略人工兔算法优化的粒子重组滤波算法。引入中垂线算法提高人工兔算法收敛速度,通过其觅食与隐藏机制,使得最优粒子引导粒子集向高似然区域移动,以此提高估计精度;实时计算最优粒子附近的粒子密度,当密度大于设置的阈值时,自适应调整迭代次数,当大于最大密度值时,引入自扰动策略避免陷入局部最优以及增加样本多样性;重采样阶段,将筛选后保留的粒子与剩余粒子重新组合成新的粒子,以此增加粒子多样性。通过仿真检验改进算法在SLAM中的性能,结果表明:该算法与其他3种算法相比,位姿与路标估计精度更高,鲁棒性更佳。 展开更多
关键词 粒子滤波 中垂线算法 人工优化算法 自适应调整 自扰动策略 SLAM
在线阅读 下载PDF
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究 被引量:2
6
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工算法(iaro) 双向长短时记忆网络(BiLSTM) 栈式稀疏自编码器(SSAE)
在线阅读 下载PDF
两级融合的多传感器数据融合算法研究 被引量:9
7
作者 彭道刚 段睿杰 王丹豪 《仪表技术与传感器》 CSCD 北大核心 2024年第1期87-93,共7页
针对智慧工厂监测环境中多源数据融合精度问题,提出了一种两级融合的多传感器数据融合方法,旨在提高多源数据融合的准确性和可靠性。该方法分为一级数据融合和二级决策融合,首先采用卡尔曼滤波结合自适应加权平均对同类型传感器进行数... 针对智慧工厂监测环境中多源数据融合精度问题,提出了一种两级融合的多传感器数据融合方法,旨在提高多源数据融合的准确性和可靠性。该方法分为一级数据融合和二级决策融合,首先采用卡尔曼滤波结合自适应加权平均对同类型传感器进行数据降噪融合处理,其次利用人工兔优化算法(ARO)优化ELM神经网络进行决策融合。实验结果表明,基于ARO优化ELM神经网络的多传感器数据融合算法在融合精度方面优于其他先进算法。经验证,所提出的两级融合多传感器数据融合方法具有更好的融合性能,有效提升感知系统的可靠性和鲁棒性,实现更加准确和可靠的监测和预测。 展开更多
关键词 多传感器数据融合 卡尔曼滤波 自适应加权平均 人工优化算法 ELM神经网络
在线阅读 下载PDF
基于ARO-MKELM的微电网攻击检测 被引量:1
8
作者 吴忠强 张伟一 《计量学报》 CSCD 北大核心 2024年第10期1444-1452,共9页
智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人... 智能电网的复杂性和开放性使其在信息交换时更易受到网络攻击的威胁。目前大多数检测方法只关注检测攻击的存在性,不能确定受到攻击的分布式电源的具体位置,导致无法快速将被攻击的分布式电源隔离,继而造成严重的损失。提出一种基于人工兔群优化算法优化多核极限学习机的交流微电网虚假数据注入攻击检测方法。在传统极限学习机中引入组合核函数以提升检测模型的学习能力和泛化能力,并采用具有强全局搜索能力的人工兔群优化算法优化多核极限学习机的核函数参数及正则化系数,进一步提升检测模型的检测精度。利用非训练样本内幅值为55和95的阶跃攻击信号进行仿真验证,检测准确率范围分别达到了(93.44~94.64)%和(98.11~99.23)%,与其他检测模型进行对比分析,验证了所提方法的优越性。 展开更多
关键词 电学计量 交流微电网 虚假数据注入 人工群优化算法 多核极限学习机
在线阅读 下载PDF
基于近红外光谱技术结合ARO-LSSVR的天麻中有效成分含量快速检测 被引量:3
9
作者 李珊珊 张付杰 +5 位作者 李丽霞 张浩 段星桅 史磊 崔秀明 李小青 《食品科学》 EI CAS CSCD 北大核心 2024年第4期207-213,共7页
为实现对天麻中天麻素和对羟基苯甲醇含量的快速、无损检测,以云南昭通乌天麻为实验对象,采集900~1 700 nm波长范围内的光谱数据。首先,采用卷积平滑和标准正态变量变换进行光谱数据预处理,其次通过竞争性自适应重加权采样法(competitiv... 为实现对天麻中天麻素和对羟基苯甲醇含量的快速、无损检测,以云南昭通乌天麻为实验对象,采集900~1 700 nm波长范围内的光谱数据。首先,采用卷积平滑和标准正态变量变换进行光谱数据预处理,其次通过竞争性自适应重加权采样法(competitive adapative reweighted sampling,CARS)与迭代保留信息变量算法进行特征波长的提取,根据基于特征波长建立最小二乘支持向量回归(least squares support vector machine,LSSVR)模型的结果,选择最佳特征波长提取方法。为了提高模型的准确率,本研究引入人工兔智能算法对LSSVR中的正则化参数γ和核函数密度σ2进行优化,并与粒子群优化算法(particle swarm optimization,PSO)、灰狼优化算法(grey wolf optimizer,GWO)进行对比,评估人工兔优化算法(artificial rabbits optimization,ARO)的优越性。结果表明,ARO算法在寻优速度、寻优能力上优于PSO、GWO;天麻素、对羟基苯甲醇的最佳预测模型均为CARS-AROLSSVR,其Rp2分别为0.969 6和0.957 7,预测均方根误差分别为0.014和0.020。综上,近红外光谱可用于天麻中有效成分的定量检测,本研究可为天麻快速检测装置的研发提供理论依据。 展开更多
关键词 近红外光谱 天麻 最小二乘支持向量回归 人工优化算法
在线阅读 下载PDF
基于ISSA-BP神经网络的激光甲烷传感器温度补偿研究 被引量:14
10
作者 邹翔 殷松峰 +1 位作者 程跃 刘云龙 《光子学报》 EI CAS CSCD 北大核心 2023年第8期97-108,共12页
为有效提高宽温应用环境下激光甲烷传感器的探测精度,提出基于改进麻雀搜索算法优化BP神经网络的温度补偿模型,并利用实测大规模数据集进行验证。在模型框架上,提出具有全局寻优能力的ISSA-BP算法:利用准反射学习策略初始化麻雀种群以... 为有效提高宽温应用环境下激光甲烷传感器的探测精度,提出基于改进麻雀搜索算法优化BP神经网络的温度补偿模型,并利用实测大规模数据集进行验证。在模型框架上,提出具有全局寻优能力的ISSA-BP算法:利用准反射学习策略初始化麻雀种群以提高麻雀种群多样性,引入变色龙算法、Levy飞行策略和人工兔扰动策略分别对探索者位置、反捕食者位置和每代麻雀个体位置进行更新,避免算法陷入局部最优。在数据上,通过建立不同温度、不同浓度的传感器大规模实验数据集,提升温度补偿模型的训练效果并减小模型的预测误差。在-20℃~65℃温度范围内利用15800组传感器测量数据分别对BP、PSO-BP、SSA-BP和ISSA-BP四种模型进行对比。结果表明,基于ISSA-BP神经网络的温度补偿模型预测值最大相对误差仅为0.52%,比BP、PSO-BP和SSA-BP模型分别减少了7.70%、2.46%和0.74%,MAE、MAPE、RMSE和RE量化评价指标均远优于BP、PSO-BP和SSA-BP模型。本文算法可大幅提高宽温应用环境下激光甲烷传感器探测精度,对提升激光甲烷传感器的环境适用性具有重要的参考意义。 展开更多
关键词 激光甲烷传感器 温度补偿 麻雀搜索算法 准反射学习 变色龙算法 人工优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部