期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
煤矿带式输送机异常状态视频AI识别技术研究
被引量:
15
1
作者
毛清华
郭文瑾
+4 位作者
翟姣
王荣泉
尚新芒
李世坤
薛旭升
《工矿自动化》
CSCD
北大核心
2023年第9期36-46,共11页
传统的带式输送机异常状态识别采用人工巡检或机械综合保护系统进行检测,人工巡检劳动强度大、效率低、难以准确发现故障等,机械综合保护系统易造成误判,识别效果不佳,已无法满足煤炭行业智能化需求。随着机器视觉、深度学习和工业以太...
传统的带式输送机异常状态识别采用人工巡检或机械综合保护系统进行检测,人工巡检劳动强度大、效率低、难以准确发现故障等,机械综合保护系统易造成误判,识别效果不佳,已无法满足煤炭行业智能化需求。随着机器视觉、深度学习和工业以太网技术发展,视频AI技术成为煤矿带式输送机异常状态智能识别的研究热点。分析了采用视频AI技术识别煤矿带式输送机输送带跑偏、托辊故障、人员入侵、人员不安全行为、堆煤及异物等异常状态的研究现状,指出目前煤矿带式输送机异常状态视频AI识别技术存在视频图像数据集构建耗时长、异常状态识别精度不高、视频信息传输延时大3个主要问题。针对视频图像数据集构建耗时长问题,提出加强基于半监督、无监督及小样本学习的视频AI识别算法研究、基于生成模型等方式扩充数据集的解决思路;针对异常状态识别精度不高问题,提出加强数据去模糊方法研究、利用生成对抗网络等算法均衡正负样本和改进AI识别算法的解决思路;针对视频信息传输延时大问题,提出构建“云−边−端”协同的带式输送机异常状态视频AI识别系统架构,合理部署高带宽、低延时的网络通信系统的解决思路。从高性能视频AI识别算法,高带宽、低延时视频通信技术,“云−边−端”高效协同的视频AI识别系统和健全视频AI识别技术标准4个方面展望了带式输送机异常状态视频AI识别技术的发展趋势。
展开更多
关键词
煤矿带式输送机
异常
状态
识别
视频AI识别
胶带跑偏
检测
托辊故障
检测
人员异常状态检测
堆煤
检测
异物
检测
在线阅读
下载PDF
职称材料
题名
煤矿带式输送机异常状态视频AI识别技术研究
被引量:
15
1
作者
毛清华
郭文瑾
翟姣
王荣泉
尚新芒
李世坤
薛旭升
机构
西安科技大学机械工程学院
陕西省矿山机电装备智能检测与控制重点实验室
西安重装韩城煤矿机械有限公司
出处
《工矿自动化》
CSCD
北大核心
2023年第9期36-46,共11页
基金
陕西省煤矿带式输送机智能测控技术研究与应用“科学家+工程师”队伍项目(2023KXJ-238)。
文摘
传统的带式输送机异常状态识别采用人工巡检或机械综合保护系统进行检测,人工巡检劳动强度大、效率低、难以准确发现故障等,机械综合保护系统易造成误判,识别效果不佳,已无法满足煤炭行业智能化需求。随着机器视觉、深度学习和工业以太网技术发展,视频AI技术成为煤矿带式输送机异常状态智能识别的研究热点。分析了采用视频AI技术识别煤矿带式输送机输送带跑偏、托辊故障、人员入侵、人员不安全行为、堆煤及异物等异常状态的研究现状,指出目前煤矿带式输送机异常状态视频AI识别技术存在视频图像数据集构建耗时长、异常状态识别精度不高、视频信息传输延时大3个主要问题。针对视频图像数据集构建耗时长问题,提出加强基于半监督、无监督及小样本学习的视频AI识别算法研究、基于生成模型等方式扩充数据集的解决思路;针对异常状态识别精度不高问题,提出加强数据去模糊方法研究、利用生成对抗网络等算法均衡正负样本和改进AI识别算法的解决思路;针对视频信息传输延时大问题,提出构建“云−边−端”协同的带式输送机异常状态视频AI识别系统架构,合理部署高带宽、低延时的网络通信系统的解决思路。从高性能视频AI识别算法,高带宽、低延时视频通信技术,“云−边−端”高效协同的视频AI识别系统和健全视频AI识别技术标准4个方面展望了带式输送机异常状态视频AI识别技术的发展趋势。
关键词
煤矿带式输送机
异常
状态
识别
视频AI识别
胶带跑偏
检测
托辊故障
检测
人员异常状态检测
堆煤
检测
异物
检测
Keywords
coal mine belt conveyor
abnormal state recognition
video AI recognition
belt deviation detection
idler failure detection
abnormal state detection of personnel
coal stacking detection
foreign object detection
分类号
TD528 [矿业工程—矿山机电]
TD634 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
煤矿带式输送机异常状态视频AI识别技术研究
毛清华
郭文瑾
翟姣
王荣泉
尚新芒
李世坤
薛旭升
《工矿自动化》
CSCD
北大核心
2023
15
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部