期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于全局一致性网络的参数化人体网格重建
1
作者
鲍文霞
田如震
+2 位作者
王年
陈和木
杨先军
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第7期19-28,共10页
人体网格重建(HMR)在人机交互和虚拟/增强现实等领域有广泛应用。为了进一步提高基于图像的人体网格重建中人体姿势和形状估计的精度,提出了基于混合逆运动学的全局一致性深度卷积神经网络,用于参数化人体网格重建(GloCoNet)。为了增强...
人体网格重建(HMR)在人机交互和虚拟/增强现实等领域有广泛应用。为了进一步提高基于图像的人体网格重建中人体姿势和形状估计的精度,提出了基于混合逆运动学的全局一致性深度卷积神经网络,用于参数化人体网格重建(GloCoNet)。为了增强网络的全局一致性和全局上的长程依赖,该网络在特征提取网络基础上,设计了全局一致性增强器(GCB)模块,它能够增强模型对全局信息的感知能力和表达能力,并且使模型能够自适应地调整不同通道和空间位置的特征图权重。然后引入了多头注意力机制(MHSA)来捕获模型全局上的长程依赖,它可以帮助模型在处理长期依赖时更好地捕捉到关键的关系和模式,并建模全局上下文信息,从而更好的丰富特征子空间的多样性。同时,该网络采用混合逆运动学的方法弥合人体网格估计和3D人体关节点估计之间的差距,最终提升人体3D姿势和形状估计的准确度。实验结果表明,GloCoNet模型在公开的Human 3.6 M数据集上以平均每关节51.3 mm的位置误差(MPJPE)显著优于先前的主流方法。
展开更多
关键词
人体网格重建
全局一致性
混合逆运动学
人体
参数
在线阅读
下载PDF
职称材料
题名
基于全局一致性网络的参数化人体网格重建
1
作者
鲍文霞
田如震
王年
陈和木
杨先军
机构
安徽大学电子信息工程学院
安徽医科大学第一附属医院
中国科学院合肥物质科学研究院
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第7期19-28,共10页
基金
国家重点研发计划项目(2020YFF0303803)
安徽省重点研究与开发计划资助项目(2022k07020006)
安徽高校自然科学研究资助项目(KJ2021ZD0004,2022ah051160)。
文摘
人体网格重建(HMR)在人机交互和虚拟/增强现实等领域有广泛应用。为了进一步提高基于图像的人体网格重建中人体姿势和形状估计的精度,提出了基于混合逆运动学的全局一致性深度卷积神经网络,用于参数化人体网格重建(GloCoNet)。为了增强网络的全局一致性和全局上的长程依赖,该网络在特征提取网络基础上,设计了全局一致性增强器(GCB)模块,它能够增强模型对全局信息的感知能力和表达能力,并且使模型能够自适应地调整不同通道和空间位置的特征图权重。然后引入了多头注意力机制(MHSA)来捕获模型全局上的长程依赖,它可以帮助模型在处理长期依赖时更好地捕捉到关键的关系和模式,并建模全局上下文信息,从而更好的丰富特征子空间的多样性。同时,该网络采用混合逆运动学的方法弥合人体网格估计和3D人体关节点估计之间的差距,最终提升人体3D姿势和形状估计的准确度。实验结果表明,GloCoNet模型在公开的Human 3.6 M数据集上以平均每关节51.3 mm的位置误差(MPJPE)显著优于先前的主流方法。
关键词
人体网格重建
全局一致性
混合逆运动学
人体
参数
Keywords
human body mesh reconstruction
global consistency
hybrid inverse kinematics
human body parameter
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于全局一致性网络的参数化人体网格重建
鲍文霞
田如震
王年
陈和木
杨先军
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部