毫米波雷达凭借其出色的环境适应性、高分辨率和隐私保护等优势,在智能家居、智慧养老和安防监控等领域具有广泛的应用前景。毫米波雷达三维点云是一种重要的空间数据表达形式,对于人体行为姿态识别具有极大的价值。然而,由于毫米波雷...毫米波雷达凭借其出色的环境适应性、高分辨率和隐私保护等优势,在智能家居、智慧养老和安防监控等领域具有广泛的应用前景。毫米波雷达三维点云是一种重要的空间数据表达形式,对于人体行为姿态识别具有极大的价值。然而,由于毫米波雷达点云具有强稀疏性,给精准快速识别人体动作带来了巨大的挑战。针对这一问题,该文公开了一个毫米波雷达人体动作三维点云数据集mmWave-3DPCHM-1.0,并提出了相应的数据处理方法和人体动作识别模型。该数据集由TI公司的IWR1443-ISK和Vayyar公司的vBlu射频成像模组分别采集,包括常见的12种人体动作,如走路、挥手、站立和跌倒等。在网络模型方面,该文将边缘卷积(EdgeConv)与Transformer相结合,提出了一种处理长时序三维点云的网络模型,即Point EdgeConv and Transformer(PETer)网络。该网络通过边缘卷积对三维点云逐帧创建局部有向邻域图,以提取单帧点云的空间几何特征,并通过堆叠多个编码器的Transformer模块,提取多帧点云之间的时序关系。实验结果表明,所提出的PETer网络在所构建的TI数据集和Vayyar数据集上的平均识别准确率分别达到98.77%和99.51%,比传统最优的基线网络模型提高了大约5%,且网络规模仅为1.09 M,适于在存储受限的边缘设备上部署。展开更多
在线人体动作识别是人体动作识别的最终目标,但由于如何分割动作序列是一个待解决的难点问题,因此目前大多数人体动作识别方法仅关注在分割好的动作序列中进行动作识别,未关注在线人体动作识别问题.本文针对这一问题,提出了一种可以完...在线人体动作识别是人体动作识别的最终目标,但由于如何分割动作序列是一个待解决的难点问题,因此目前大多数人体动作识别方法仅关注在分割好的动作序列中进行动作识别,未关注在线人体动作识别问题.本文针对这一问题,提出了一种可以完成在线人体动作识别的时序深度置信网络(Temporal deep belief network,TDBN)模型.该模型充分利用动作序列前后帧提供的上下文信息,解决了目前深度置信网络模型仅能识别静态图像的问题,不仅大大提高了动作识别的准确率,而且由于该模型不需要人为对动作序列进行分割,可以从动作进行中的任意时刻开始识别,实现了真正意义上的在线动作识别,为实际应用打下了较好的理论基础.展开更多
文摘毫米波雷达凭借其出色的环境适应性、高分辨率和隐私保护等优势,在智能家居、智慧养老和安防监控等领域具有广泛的应用前景。毫米波雷达三维点云是一种重要的空间数据表达形式,对于人体行为姿态识别具有极大的价值。然而,由于毫米波雷达点云具有强稀疏性,给精准快速识别人体动作带来了巨大的挑战。针对这一问题,该文公开了一个毫米波雷达人体动作三维点云数据集mmWave-3DPCHM-1.0,并提出了相应的数据处理方法和人体动作识别模型。该数据集由TI公司的IWR1443-ISK和Vayyar公司的vBlu射频成像模组分别采集,包括常见的12种人体动作,如走路、挥手、站立和跌倒等。在网络模型方面,该文将边缘卷积(EdgeConv)与Transformer相结合,提出了一种处理长时序三维点云的网络模型,即Point EdgeConv and Transformer(PETer)网络。该网络通过边缘卷积对三维点云逐帧创建局部有向邻域图,以提取单帧点云的空间几何特征,并通过堆叠多个编码器的Transformer模块,提取多帧点云之间的时序关系。实验结果表明,所提出的PETer网络在所构建的TI数据集和Vayyar数据集上的平均识别准确率分别达到98.77%和99.51%,比传统最优的基线网络模型提高了大约5%,且网络规模仅为1.09 M,适于在存储受限的边缘设备上部署。
文摘在线人体动作识别是人体动作识别的最终目标,但由于如何分割动作序列是一个待解决的难点问题,因此目前大多数人体动作识别方法仅关注在分割好的动作序列中进行动作识别,未关注在线人体动作识别问题.本文针对这一问题,提出了一种可以完成在线人体动作识别的时序深度置信网络(Temporal deep belief network,TDBN)模型.该模型充分利用动作序列前后帧提供的上下文信息,解决了目前深度置信网络模型仅能识别静态图像的问题,不仅大大提高了动作识别的准确率,而且由于该模型不需要人为对动作序列进行分割,可以从动作进行中的任意时刻开始识别,实现了真正意义上的在线动作识别,为实际应用打下了较好的理论基础.