期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多分辨率特征融合的人体下肢关键点检测
1
作者 夏晓华 向浩鸣 +3 位作者 陈坚 冯鑫淼 邱法博 王耀耀 《光学精密工程》 北大核心 2025年第14期2291-2302,共12页
现有的人体关键点检测模型缺乏对高分辨率特征的关注,训练中使用的数据集分辨率较低且标注误差较大,导致其在步态分析等任务中检测结果不稳定,定位精度较差。针对上述问题,提出一种基于多分辨率特征融合的人体下肢关键点检测模型,以高... 现有的人体关键点检测模型缺乏对高分辨率特征的关注,训练中使用的数据集分辨率较低且标注误差较大,导致其在步态分析等任务中检测结果不稳定,定位精度较差。针对上述问题,提出一种基于多分辨率特征融合的人体下肢关键点检测模型,以高分辨率图像作为网络输入,利用微调的MobiliNet v1网络结合注意力机制提取全局低分辨率特征,初步预测关键点位置,通过与之并行的浅层网络提取局部高分辨率特征,然后采用连续残差结构与注意力机制将不同分辨率特征融合,提升预测关键点的准确性,并有效缓解高分辨率图像带来的高计算量问题。通过预标记的方式制作高分辨率、高精度的人体下肢关键点数据集以确保模型训练的准确性。以模型复杂度、检测速度、检测精确率以及检测误差为评价指标,与其他经典和先进的方法进行实验对比。结果表明,所提模型的测试检测率达到95.2%,均优于Light⁃weight-OpenPose,HRNet-W32,HRNet-W48,YOLO-Pose,RTMPose和SimCC模型,检测精确率提升了4.1%~83.6%,FPS提升了7.6~13.9。证明了提出的模型在高精度人体下肢关键点检测中的有效性。 展开更多
关键词 人体下肢关键点检测 多分辨率特征融合 注意力机制 预标记
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部