期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于区域亮度自适应校正的茶叶嫩芽检测模型
被引量:
15
1
作者
吕军
方梦瑞
+4 位作者
姚青
武传宇
贺盈磊
边磊
钟小玉
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第22期278-285,共8页
自然光照下不同时间采集的茶叶图像存在亮度不均的现象。由于高亮度图像对比度差且嫩芽特征显著性弱,造成高亮度图像中存在较多嫩芽的漏检。针对现有茶叶嫩芽图像自动检测方法对光照变化的敏感性,该研究提出一种基于区域亮度自适应校正...
自然光照下不同时间采集的茶叶图像存在亮度不均的现象。由于高亮度图像对比度差且嫩芽特征显著性弱,造成高亮度图像中存在较多嫩芽的漏检。针对现有茶叶嫩芽图像自动检测方法对光照变化的敏感性,该研究提出一种基于区域亮度自适应校正的茶叶嫩芽检测模型。首先,对不同时间采集的龙井43茶叶图像进行灰度化;然后,计算灰度图的平均灰度(Average Gray,AG)值,对AG值在[170,230]的高亮度图像进行不同尺寸的分块处理和局部区域伽马亮度自适应校正;最后,在相同的训练集和测试集训练多个深度学习检测模型。测试结果表明,基于YOLOv5+CSPDarknet53的检测模型比SSD+VGG16、Faster RCNN+VGG16、YOLOv3+Darknet53和YOLOv4+CSPDarknet53模型具有更优的嫩芽检测性能,精确率和召回率分别为88.2%和82.1%。对YOLOv5检测结果进行检测抑制,有效避免了同一目标被多次框选的冗余现象。[30,90)和[90,170)亮度区间内嫩芽图像具有较强的显著性特征和较高的检测精度与召回率。相较于AG值在[170,230]的高亮度原始图像的检测结果,对高亮度图像进行2×3分块和局部区域亮度自适应校正后,YOLOv5嫩芽检测召回率提高了19.2个百分点。对不同光照条件下采集的茶叶图像进行测试,基于区域亮度自适应校正的茶叶嫩芽YOLOv5检测模型获得了92.4%的检测精度和90.4%的召回率。该模型对光照强度变化具有较强的鲁棒性,研究结果可为自然光照条件下茶叶嫩芽机械采摘作业提供参考。
展开更多
关键词
机器视觉
目标检测
茶叶嫩芽
光照强度
分块
亮度自适应校正
YOLOv5
在线阅读
下载PDF
职称材料
题名
基于区域亮度自适应校正的茶叶嫩芽检测模型
被引量:
15
1
作者
吕军
方梦瑞
姚青
武传宇
贺盈磊
边磊
钟小玉
机构
浙江理工大学信息学院
浙江理工大学机械与自动控制学院
中国农业科学院茶叶研究所
浙江茗皇天然食品开发股份有限公司
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第22期278-285,共8页
基金
国家茶叶产业技术体系(CARS-19)。
文摘
自然光照下不同时间采集的茶叶图像存在亮度不均的现象。由于高亮度图像对比度差且嫩芽特征显著性弱,造成高亮度图像中存在较多嫩芽的漏检。针对现有茶叶嫩芽图像自动检测方法对光照变化的敏感性,该研究提出一种基于区域亮度自适应校正的茶叶嫩芽检测模型。首先,对不同时间采集的龙井43茶叶图像进行灰度化;然后,计算灰度图的平均灰度(Average Gray,AG)值,对AG值在[170,230]的高亮度图像进行不同尺寸的分块处理和局部区域伽马亮度自适应校正;最后,在相同的训练集和测试集训练多个深度学习检测模型。测试结果表明,基于YOLOv5+CSPDarknet53的检测模型比SSD+VGG16、Faster RCNN+VGG16、YOLOv3+Darknet53和YOLOv4+CSPDarknet53模型具有更优的嫩芽检测性能,精确率和召回率分别为88.2%和82.1%。对YOLOv5检测结果进行检测抑制,有效避免了同一目标被多次框选的冗余现象。[30,90)和[90,170)亮度区间内嫩芽图像具有较强的显著性特征和较高的检测精度与召回率。相较于AG值在[170,230]的高亮度原始图像的检测结果,对高亮度图像进行2×3分块和局部区域亮度自适应校正后,YOLOv5嫩芽检测召回率提高了19.2个百分点。对不同光照条件下采集的茶叶图像进行测试,基于区域亮度自适应校正的茶叶嫩芽YOLOv5检测模型获得了92.4%的检测精度和90.4%的召回率。该模型对光照强度变化具有较强的鲁棒性,研究结果可为自然光照条件下茶叶嫩芽机械采摘作业提供参考。
关键词
机器视觉
目标检测
茶叶嫩芽
光照强度
分块
亮度自适应校正
YOLOv5
Keywords
computer vision
target detection
tea buds
light intensity
block
brightness adaptive correction
YOLOv5
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于区域亮度自适应校正的茶叶嫩芽检测模型
吕军
方梦瑞
姚青
武传宇
贺盈磊
边磊
钟小玉
《农业工程学报》
EI
CAS
CSCD
北大核心
2021
15
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部