为探讨龙泉煤层气田产甲烷菌群降解烟煤产甲烷的潜力,研究富集并驯化了龙泉煤层气田产甲烷菌群;以龙泉矿烟煤为母质,开展产甲烷菌群降解煤产气的实验室研究以及中试研究。结果表明,龙泉煤层产甲烷菌群经富集驯化后,降解烟煤产甲烷的浓度...为探讨龙泉煤层气田产甲烷菌群降解烟煤产甲烷的潜力,研究富集并驯化了龙泉煤层气田产甲烷菌群;以龙泉矿烟煤为母质,开展产甲烷菌群降解煤产气的实验室研究以及中试研究。结果表明,龙泉煤层产甲烷菌群经富集驯化后,降解烟煤产甲烷的浓度由8.2%上升至19.0%,且产气周期缩短。中试试验中,产甲烷浓度最高达27.06%,产甲烷速率达0.159 m L/(g·d);且在中试发酵产气的衰退期,向发酵罐内添加酵母粉、氮源、磷盐、镁盐、维生素、微量元素,可重新激活产甲烷菌群的活性,使其降解烟煤产甲烷的浓度回升。由此可见,富集驯化龙泉煤层产甲烷菌群可显著提高其降解烟煤产甲烷的能力;在发酵产气衰退期补加营养物质,可以活化产甲烷菌群,恢复其降解烟煤产甲烷的能力。展开更多
To study the abilities of Chlorella sorokiniana CS-01 on using CO2 from flue gases to produce biodiesel,the microaglae was cultured with different simulated flue gases containing 5%-15%(volume fraction) of CO2.The res...To study the abilities of Chlorella sorokiniana CS-01 on using CO2 from flue gases to produce biodiesel,the microaglae was cultured with different simulated flue gases containing 5%-15%(volume fraction) of CO2.The results show that strain CS-01 could grow at 15% CO2 and grow well under CO2 contents ranging from 5%-10%.The maximal biomass productivity and lipid productivity were obtained when aerating with 10% of CO2.The lipids content ranged from 28% to 43% of dry mass of biomass.The main fatty acid compositions of strain CS-01 were C14-C18(>72%) short-chain FAMEs(known as biodiesel feedstocks).Meanwhile,the biodiesel productivity was over 60%,suggesting that Chlorella sorokiniana CS-01 has a great potential for CO2 mitigation and biodiesel production.Furthermore,differential expression of three genes related to CO2 fixation and fatty acid synthesis were studied to further describe the effect of simulated flue gases on the growth and lipid accumulation of strain CS-01 at molecular level.展开更多
文摘为探讨龙泉煤层气田产甲烷菌群降解烟煤产甲烷的潜力,研究富集并驯化了龙泉煤层气田产甲烷菌群;以龙泉矿烟煤为母质,开展产甲烷菌群降解煤产气的实验室研究以及中试研究。结果表明,龙泉煤层产甲烷菌群经富集驯化后,降解烟煤产甲烷的浓度由8.2%上升至19.0%,且产气周期缩短。中试试验中,产甲烷浓度最高达27.06%,产甲烷速率达0.159 m L/(g·d);且在中试发酵产气的衰退期,向发酵罐内添加酵母粉、氮源、磷盐、镁盐、维生素、微量元素,可重新激活产甲烷菌群的活性,使其降解烟煤产甲烷的浓度回升。由此可见,富集驯化龙泉煤层产甲烷菌群可显著提高其降解烟煤产甲烷的能力;在发酵产气衰退期补加营养物质,可以活化产甲烷菌群,恢复其降解烟煤产甲烷的能力。
基金Project(50621063) supported by the National Natural Science Foundation for Distinguished Group of ChinaProjects(2010bsxt05,2010ssxt246) supported by the Innovation Foundation of Science and Technology of Central South University,China
文摘To study the abilities of Chlorella sorokiniana CS-01 on using CO2 from flue gases to produce biodiesel,the microaglae was cultured with different simulated flue gases containing 5%-15%(volume fraction) of CO2.The results show that strain CS-01 could grow at 15% CO2 and grow well under CO2 contents ranging from 5%-10%.The maximal biomass productivity and lipid productivity were obtained when aerating with 10% of CO2.The lipids content ranged from 28% to 43% of dry mass of biomass.The main fatty acid compositions of strain CS-01 were C14-C18(>72%) short-chain FAMEs(known as biodiesel feedstocks).Meanwhile,the biodiesel productivity was over 60%,suggesting that Chlorella sorokiniana CS-01 has a great potential for CO2 mitigation and biodiesel production.Furthermore,differential expression of three genes related to CO2 fixation and fatty acid synthesis were studied to further describe the effect of simulated flue gases on the growth and lipid accumulation of strain CS-01 at molecular level.