期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PSO-BP模型的省域交通运输碳排放多情景预测
1
作者 李雨 王君 +1 位作者 张萌萌 付建村 《华南师范大学学报(自然科学版)》 北大核心 2025年第2期12-22,共11页
以山东省交通运输领域为例,利用可拓展的随机性环境影响评估模型(STIRPAT)结合岭回归方法分析了碳排放驱动因素,采用粒子群算法(PSO)优化反向传播神经网络(BP神经网络),构建了以人口、人均GDP等7类变量为输入层的PSO-BP神经网络组合预... 以山东省交通运输领域为例,利用可拓展的随机性环境影响评估模型(STIRPAT)结合岭回归方法分析了碳排放驱动因素,采用粒子群算法(PSO)优化反向传播神经网络(BP神经网络),构建了以人口、人均GDP等7类变量为输入层的PSO-BP神经网络组合预测模型,对2023—2035年山东省交通运输在3种情景下的CO_(2)排放量进行了预测分析。结果表明:人口规模、人均GDP、能源结构、交通能源强度、货运周转量、民用车保有量是山东省交通运输碳排放的促进因素,交通运输强度是抑制因素;PSO-BP预测模型具有较高精度和较好的拟合效果,预测结果与单一的BP神经网络、支持向量回归模型(SVR)、STIRPAT模型对比,平均绝对百分比误差分别降低5.78%、2.00%和3.78%,均方根误差分别降低3.357×10^(6)、1.539×10^(6)、1.953×10^(6) t,平均绝对误差分别降低2.651×10^(6)、1.128×10^(6)、1.756×10^(6) t;预测期内,山东省交通运输CO_(2)排放量在低碳情景下将于2030年达到峰值5.535×107 t,在基准情景和高碳情景下将保持增长趋势。在现有政策基础上,山东省应持续优化交通运输结构,积极推广低碳出行方式,提升清洁能源应用比重,以实现交通运输的绿色化、低碳化及高质量发展目标。 展开更多
关键词 交通碳排放预测 STIRPAT模型 BP神经网络 粒子群优化算法 情景分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部