期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于时空融合图卷积的交通流数据修复方法 被引量:9
1
作者 侯越 韩成艳 +1 位作者 郑鑫 邓志远 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第7期1394-1403,共10页
为了解决现有时空相关修复法挖掘交通流特性不充分的问题,提出基于时空融合图卷积网络的缺失数据修复方法.该方法在分析交通流时空特性的基础上,采用2类函数分别计算交通流数据的时间自相关系数和空间关联度系数.将交通检测器的部署位... 为了解决现有时空相关修复法挖掘交通流特性不充分的问题,提出基于时空融合图卷积网络的缺失数据修复方法.该方法在分析交通流时空特性的基础上,采用2类函数分别计算交通流数据的时间自相关系数和空间关联度系数.将交通检测器的部署位置作为节点构成几何拓扑图,通过线性融合规则构建时空融合矩阵,替代图卷积输入层的邻接矩阵,捕获交通流细粒化的时空关系.利用轻量级一维卷积层学习多通道时序向量的时间特征,加快模型的收敛速度.利用图卷积层学习交通流数据的空间特征,构建时空融合图卷积网络修复模型.实验结果表明,与其他修复方法相比,该方法在多检测器场景中的修复精度和模型收敛速度均有所提升,可以有效地修复交通流缺失数据. 展开更多
关键词 交通工程 时空融合 交通流数据修复 图卷积网络 一维卷积
在线阅读 下载PDF
基于自注意力机制与图自编码器的路网交通流数据修复模型 被引量:10
2
作者 张伟斌 张蒲璘 +1 位作者 苏子毅 孙锋 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第4期90-98,共9页
针对城市交通流数据修复问题,提出一种基于图卷积网络和多头自注意力机制的自注意力图自编码器模型。该模型包括基于拓扑图结构和图信号捕获交通流时空关联性的STGCN(Spatial-temporal Graph Convolutional Networks)网络。在该网络中使... 针对城市交通流数据修复问题,提出一种基于图卷积网络和多头自注意力机制的自注意力图自编码器模型。该模型包括基于拓扑图结构和图信号捕获交通流时空关联性的STGCN(Spatial-temporal Graph Convolutional Networks)网络。在该网络中使用LSTM(Long Short-Term Memory)网络学习数据中时序规律,通过注意力网络计算道路自注意力及一阶临近道路注意力系数,用图卷积网络对图信号重组,达到对缺失数据的精确修复。同时,采用多头自注意力网络计算数据的注意力权值并对数据重组,捕获交通流数据中的二阶及高阶临近道路空间关联性,提取已知数据与缺失数据的时间关系,以残差链的形式加入到模型中,作为对STGCN功能的补充。基于真实数据的实验表明,在多种缺失模式和缺失率下,该模型能够学习路网拓扑关系,捕获数据中的时间规律性和时空关联性,有效地修复缺失数据。 展开更多
关键词 智能交通 交通流数据修复 图卷积网络 城市路网交通数据 自注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部