为解决图像采集中噪声和复杂背景对图片的影响以及深度神经网络的高耗时问题,基于可能性聚类算法与卷积神经网络,提出一种道路交通标识识别算法.该方法运用了图像分割技术,并结合卷积神经网络模型对道路交通标识进行更准确的识别.首先,...为解决图像采集中噪声和复杂背景对图片的影响以及深度神经网络的高耗时问题,基于可能性聚类算法与卷积神经网络,提出一种道路交通标识识别算法.该方法运用了图像分割技术,并结合卷积神经网络模型对道路交通标识进行更准确的识别.首先,通过色彩增强、图像分割、特征提取、数据增强和归一化等批量预处理操作,形成一个完整的数据集;然后,结合Squeeze-and-Excitation思想和残差网络结构,充分训练出MRESE(My Residual-Squeeze and Excitation)卷积神经网络模型;最后,将优化的网络模型用于道路交通标志的识别.实验结果表明,该方法使训练时间缩短了5%左右,识别精度可达99.02%.展开更多
A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. S...A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. Secondly, traffic sign color-image is preprocessed with gray scaling, and normalized to 64×64 size. Then, image features could be obtained by four levels DT-CWT images. Thirdly, 2DICA and nearest neighbor classifier are united to recognize traffic signs. The whole recognition algorithm is implemented for classification of 50 categories of traffic signs and its recognition accuracy reaches 90%. Comparing image representation DT-CWT with the well-established image representation like template, Gabor, and 2DICA with feature selection techniques such as PCA, LPP, 2DPCA at the same time, the results show that combination method of DT-CWT and 2DICA is useful in traffic signs recognition. Experimental results indicate that the proposed algorithm is robust, effective and accurate.展开更多
文摘为解决图像采集中噪声和复杂背景对图片的影响以及深度神经网络的高耗时问题,基于可能性聚类算法与卷积神经网络,提出一种道路交通标识识别算法.该方法运用了图像分割技术,并结合卷积神经网络模型对道路交通标识进行更准确的识别.首先,通过色彩增强、图像分割、特征提取、数据增强和归一化等批量预处理操作,形成一个完整的数据集;然后,结合Squeeze-and-Excitation思想和残差网络结构,充分训练出MRESE(My Residual-Squeeze and Excitation)卷积神经网络模型;最后,将优化的网络模型用于道路交通标志的识别.实验结果表明,该方法使训练时间缩短了5%左右,识别精度可达99.02%.
基金Projects(90820302, 60805027) supported by the National Natural Science Foundation of ChinaProject(200805330005) supported by Research Fund for Doctoral Program of Higher Education, ChinaProject(2009FJ4030) supported by Academician Foundation of Hunan Province, China
文摘A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. Secondly, traffic sign color-image is preprocessed with gray scaling, and normalized to 64×64 size. Then, image features could be obtained by four levels DT-CWT images. Thirdly, 2DICA and nearest neighbor classifier are united to recognize traffic signs. The whole recognition algorithm is implemented for classification of 50 categories of traffic signs and its recognition accuracy reaches 90%. Comparing image representation DT-CWT with the well-established image representation like template, Gabor, and 2DICA with feature selection techniques such as PCA, LPP, 2DPCA at the same time, the results show that combination method of DT-CWT and 2DICA is useful in traffic signs recognition. Experimental results indicate that the proposed algorithm is robust, effective and accurate.