期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于时空Transformer的多空间尺度交通预测模型
1
作者
张悦
张磊
+2 位作者
刘佰龙
梁志贞
张雪飞
《计算机工程与科学》
CSCD
北大核心
2024年第10期1852-1863,共12页
准确的交通预测对提高智能交通系统的效率至关重要。交通系统的空间依赖不仅体现在道路的相连关系上,更重要的是由道路属性、区域功能等因素形成的隐藏空间依赖。另外,交通数据之间的时间依赖具有严格的相对位置关系,忽略这一问题将难...
准确的交通预测对提高智能交通系统的效率至关重要。交通系统的空间依赖不仅体现在道路的相连关系上,更重要的是由道路属性、区域功能等因素形成的隐藏空间依赖。另外,交通数据之间的时间依赖具有严格的相对位置关系,忽略这一问题将难以实现准确的交通预测。为了解决这些问题,提出了一种基于时空Transformer的多空间尺度交通预测模型(MSS-STT)。MSS-STT使用多个特定的Transformer网络对不同的空间尺度建模,以捕捉隐藏空间依赖,同时使用图卷积网络来学习静态空间特征。接着,使用门控机制将不同空间尺度的空间依赖与静态空间特征根据各自对预测的重要性进行融合。最后,根据时间序列中不同相对位置对预测的不同贡献来提取不同的时间依赖关系。在PeMS数据集上的实验结果表明,MSS-STT优于最先进的基线。
展开更多
关键词
交通数据预测
时空依赖
时空Transformer
图神经网络
在线阅读
下载PDF
职称材料
题名
基于时空Transformer的多空间尺度交通预测模型
1
作者
张悦
张磊
刘佰龙
梁志贞
张雪飞
机构
中国矿业大学矿山数字化教育部工程研究中心
中国矿业大学计算机科学与技术学院
江苏恒旺数字科技有限责任公司
出处
《计算机工程与科学》
CSCD
北大核心
2024年第10期1852-1863,共12页
基金
中国矿业大学建设双一流专项资金(2018ZZCX14)。
文摘
准确的交通预测对提高智能交通系统的效率至关重要。交通系统的空间依赖不仅体现在道路的相连关系上,更重要的是由道路属性、区域功能等因素形成的隐藏空间依赖。另外,交通数据之间的时间依赖具有严格的相对位置关系,忽略这一问题将难以实现准确的交通预测。为了解决这些问题,提出了一种基于时空Transformer的多空间尺度交通预测模型(MSS-STT)。MSS-STT使用多个特定的Transformer网络对不同的空间尺度建模,以捕捉隐藏空间依赖,同时使用图卷积网络来学习静态空间特征。接着,使用门控机制将不同空间尺度的空间依赖与静态空间特征根据各自对预测的重要性进行融合。最后,根据时间序列中不同相对位置对预测的不同贡献来提取不同的时间依赖关系。在PeMS数据集上的实验结果表明,MSS-STT优于最先进的基线。
关键词
交通数据预测
时空依赖
时空Transformer
图神经网络
Keywords
traffic data prediction
spatio-temporal dependency
spatio-temporal Transformer
graph neural network
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于时空Transformer的多空间尺度交通预测模型
张悦
张磊
刘佰龙
梁志贞
张雪飞
《计算机工程与科学》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部