期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双图卷积机制的数字孪生交通流预测
1
作者 胡春华 曾萼岚 荣辉桂 《电子学报》 北大核心 2025年第1期141-150,共10页
城市数字化程度提升产生了大量数据,通过对交通流数据和天气数据的整合分析,能有效缓解各种天气状况下产生的城市交通拥堵.而现有交通流预测算法,未能充分考虑交通流中潜在的空间关系,且忽略了天气等外部因素造成的预测误差,极大地影响... 城市数字化程度提升产生了大量数据,通过对交通流数据和天气数据的整合分析,能有效缓解各种天气状况下产生的城市交通拥堵.而现有交通流预测算法,未能充分考虑交通流中潜在的空间关系,且忽略了天气等外部因素造成的预测误差,极大地影响了预测的准确性.针对上述问题,本文提出了基于双图卷积机制的数字孪生交通流预测方法(Two-graph Convolution Mechanism-based Digital Twin Flow Prediction,TCM-DTFP).该算法将交通流数据与天气特征相结合,构建了融合交通流特征与天气特征的增广矩阵,提出基于TCN(Temporal Convolutional Networks)的双图卷积机制,算法综合考虑了交通中时间相关性、空间相关性与区域流量间的动态相互作用对交通流的影响,同时避免了复杂天气状况对交通流预测的影响,提高了算法的鲁棒性.最后基于TaxiBJ和PeMSD4真实数据集进行的大量实验表明了本文方法的有效性. 展开更多
关键词 交通数字孪生体 时空相关性 时间卷积网络 双图卷积机制 交通流预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部