推荐系统帮助用户在海量数据中更便捷地找到他们最感兴趣的内容。但推荐系统存在可信度低、推荐结果的可解释性不足、可扩展性不好、随着用户数量的增大,计算时间增长且精度较低、数据稀疏性和冷启动等问题。为此提出基于交替最小二乘法...推荐系统帮助用户在海量数据中更便捷地找到他们最感兴趣的内容。但推荐系统存在可信度低、推荐结果的可解释性不足、可扩展性不好、随着用户数量的增大,计算时间增长且精度较低、数据稀疏性和冷启动等问题。为此提出基于交替最小二乘法(alternating least squares,ALS)的推荐系统优化算法,在ALS基础上对两个部分进一步优化:第一部分采用LBFGS (limited-memory broyden-fletcher-goldfarb-shanno)算法使搜索方向快速计算出来;第二部分采用阻尼牛顿法求解步长因子。在Spark平台上加以验证,取得较好效果。展开更多
针对海洋传感网(Ocean Sensor Networks,OSNs)中采用非协同算法单一循环地对多个水面目标节点依次定位导致的定位效率低、定位精度差等问题,提出一种基于有效集的再优化协同定位(Active Set Method based Re-Estimation Cooperative Loc...针对海洋传感网(Ocean Sensor Networks,OSNs)中采用非协同算法单一循环地对多个水面目标节点依次定位导致的定位效率低、定位精度差等问题,提出一种基于有效集的再优化协同定位(Active Set Method based Re-Estimation Cooperative Localization,ASM-RECL)算法。研究将原定位的非凸非线性问题转化为基于交替非负约束最小二乘(Alternative Nonnegative Constrained Least Squares,ANCLS)的优化问题,利用有效集法(Active Set Method,ASM)通过内外循环寻求优化问题的可行解。但ASM算法易陷入局部最优,为进一步提升解的质量,改进定位精度,基于ASM得出的可行解,应用一阶泰勒级数线性展开再次构造优化方程,最小化定位误差。此外,研究还推导得到基于协同定位的克劳美罗下界(Cooperative Localization-based Cramer-Rao Low Bound,CRLB-CL),以此作为评价标准评估提出的定位算法的有效性。仿真实验表明,在不同的条件下,ASM-RECL的定位精度较高于其他算法。展开更多
文摘推荐系统帮助用户在海量数据中更便捷地找到他们最感兴趣的内容。但推荐系统存在可信度低、推荐结果的可解释性不足、可扩展性不好、随着用户数量的增大,计算时间增长且精度较低、数据稀疏性和冷启动等问题。为此提出基于交替最小二乘法(alternating least squares,ALS)的推荐系统优化算法,在ALS基础上对两个部分进一步优化:第一部分采用LBFGS (limited-memory broyden-fletcher-goldfarb-shanno)算法使搜索方向快速计算出来;第二部分采用阻尼牛顿法求解步长因子。在Spark平台上加以验证,取得较好效果。
文摘针对海洋传感网(Ocean Sensor Networks,OSNs)中采用非协同算法单一循环地对多个水面目标节点依次定位导致的定位效率低、定位精度差等问题,提出一种基于有效集的再优化协同定位(Active Set Method based Re-Estimation Cooperative Localization,ASM-RECL)算法。研究将原定位的非凸非线性问题转化为基于交替非负约束最小二乘(Alternative Nonnegative Constrained Least Squares,ANCLS)的优化问题,利用有效集法(Active Set Method,ASM)通过内外循环寻求优化问题的可行解。但ASM算法易陷入局部最优,为进一步提升解的质量,改进定位精度,基于ASM得出的可行解,应用一阶泰勒级数线性展开再次构造优化方程,最小化定位误差。此外,研究还推导得到基于协同定位的克劳美罗下界(Cooperative Localization-based Cramer-Rao Low Bound,CRLB-CL),以此作为评价标准评估提出的定位算法的有效性。仿真实验表明,在不同的条件下,ASM-RECL的定位精度较高于其他算法。
文摘联合对角化方法是求解盲源分离问题的有力工具.但是现存的联合对角化算法大都只能求解实数域盲源分离问题,且对目标矩阵有诸多限制.为了求解更具一般性的复数域盲源分离问题,提出了一种基于结构特点的联合对角化(Structural Traits Based Joint Diagonalization,STBJD)算法,既取消了预白化操作解除了对目标矩阵的正定性限制,又允许目标矩阵组为复值,具有极广的适用性.首先,引入矩阵变换,将待联合对角化的复数域目标矩阵组转化为新的具有鲜明结构特点的实对称目标矩阵组.随后,构建联合对角化最小二乘代价函数,引入交替最小二乘迭代算法求解代价函数,并在优化过程中充分挖掘所涉参量的结构特点加以利用.最终,求得混迭矩阵的估计并据此恢复源信号.仿真实验证明与现存的有代表性的对目标矩阵无特殊限制的复数域联合对角化算法FAJD算法及CVFFDIAG算法相比,STBJD算法具有更高的收敛精度,能有效地解决盲源分离问题.