针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法...针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。展开更多
现有回声状态网络(Echo State Networks,ESNs)的通信话务量预测方法只考虑了历史通信话务量对预测性能的影响,较少涉及多个输入变量的通信话务量预测问题。文中首先针对ESNs用于实际多元时间序列预测任务时训练效率低,输入数据维数较多...现有回声状态网络(Echo State Networks,ESNs)的通信话务量预测方法只考虑了历史通信话务量对预测性能的影响,较少涉及多个输入变量的通信话务量预测问题。文中首先针对ESNs用于实际多元时间序列预测任务时训练效率低,输入数据维数较多时计算复杂度大的问题,提出用改进的交替方向乘子算法(IAD-ESNs算法)训练ESNs;针对单一输入变量不能提供更加全面的预测信息,提出了改进ESNs的多变量预测模型(MP-IADMM-ESNs)。以真实通信话务量数据进行仿真实验,结果表明,提出的预测模型MP-IADMM-ESNs对多变量通信话务量预测有较高的预测精度和预测效率。展开更多
针对压缩感知下与字典学习和交替方向乘子算法(alternating direction method of multipliers,ADMM)密切相关方法存在的问题,研究并提出了一种在压缩感知理论下采用字典学习和ADMM重建地震数据的方法。首先对不完整地震数据进行字典学习...针对压缩感知下与字典学习和交替方向乘子算法(alternating direction method of multipliers,ADMM)密切相关方法存在的问题,研究并提出了一种在压缩感知理论下采用字典学习和ADMM重建地震数据的方法。首先对不完整地震数据进行字典学习,使其稀疏地表示,再根据地震道的缺失情况设计合理的采样矩阵,最后对建立的L1范数约束模型采用ADMM进行求解得到重建后的地震数据。建立了压缩感知下基于字典学习和ADMM的地震数据插值技术流程。正演模拟数据和实际数据的重建实验结果表明:与压缩感知理论下采用固定基的重建方法相比,字典学习能够自适应地对地震数据进行更优的稀疏表示。与常用的curvelet等重建算法相比,采用ADMM能够更加精确地重建地震数据。与固定基和正交匹配追踪(orthogonal matching pursuit,OMP)相比,在压缩感知理论下采用字典学习和ADMM重建的地震数据有更高的信噪比。展开更多
文摘针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。
文摘现有回声状态网络(Echo State Networks,ESNs)的通信话务量预测方法只考虑了历史通信话务量对预测性能的影响,较少涉及多个输入变量的通信话务量预测问题。文中首先针对ESNs用于实际多元时间序列预测任务时训练效率低,输入数据维数较多时计算复杂度大的问题,提出用改进的交替方向乘子算法(IAD-ESNs算法)训练ESNs;针对单一输入变量不能提供更加全面的预测信息,提出了改进ESNs的多变量预测模型(MP-IADMM-ESNs)。以真实通信话务量数据进行仿真实验,结果表明,提出的预测模型MP-IADMM-ESNs对多变量通信话务量预测有较高的预测精度和预测效率。
文摘针对压缩感知下与字典学习和交替方向乘子算法(alternating direction method of multipliers,ADMM)密切相关方法存在的问题,研究并提出了一种在压缩感知理论下采用字典学习和ADMM重建地震数据的方法。首先对不完整地震数据进行字典学习,使其稀疏地表示,再根据地震道的缺失情况设计合理的采样矩阵,最后对建立的L1范数约束模型采用ADMM进行求解得到重建后的地震数据。建立了压缩感知下基于字典学习和ADMM的地震数据插值技术流程。正演模拟数据和实际数据的重建实验结果表明:与压缩感知理论下采用固定基的重建方法相比,字典学习能够自适应地对地震数据进行更优的稀疏表示。与常用的curvelet等重建算法相比,采用ADMM能够更加精确地重建地震数据。与固定基和正交匹配追踪(orthogonal matching pursuit,OMP)相比,在压缩感知理论下采用字典学习和ADMM重建的地震数据有更高的信噪比。