期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
应用于异常事件检测的深度交替方向乘子法网络
1
作者 胡世成 杨柳 +1 位作者 康凯 钱骅 《电子与信息学报》 EI CSCD 北大核心 2023年第7期2634-2641,共8页
针对大规模无线传感器网络(WSN)中的事件检测问题(EDP),传统的方法通常依赖先验信息,阻碍了实际应用。该文为EDP提出了一种基于深度学习的算法,称为交替方向乘子法网络(ADMM-Net)。首先,采用低秩稀疏矩阵分解来建模事件的时空相关性。之... 针对大规模无线传感器网络(WSN)中的事件检测问题(EDP),传统的方法通常依赖先验信息,阻碍了实际应用。该文为EDP提出了一种基于深度学习的算法,称为交替方向乘子法网络(ADMM-Net)。首先,采用低秩稀疏矩阵分解来建模事件的时空相关性。之后,EDP被表述为一个带约束的优化问题并用交替方向乘子法(ADMM)求解。然而,优化算法收敛慢且算法的性能依赖于对先验参数的仔细选择。该文基于深度学习中“展开”的概念,提出了一种用于EDP的深度神经网络ADMM-Net。通过“展开”ADMM算法的方式得到。ADMM-Net具有固定层数,其参数可以通过监督学习训练获得。无需先验信息。相比于传统算法,提出的ADMM-Net收敛快且不需先验信息。人造数据集和真实数据集的仿真结果验证了ADMM-Net的有效性。 展开更多
关键词 事件检测 无线传感器网络 时空相关性 低秩稀疏分解 深度学习 交替方向乘子法网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部