期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Risk assessment of rockburst using SMOTE oversampling and integration algorithms under GBDT framework 被引量:1
1
作者 WANG Jia-chuang DONG Long-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2891-2915,共25页
Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is graduall... Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is gradually becoming a trend.In this study,the integrated algorithms under Gradient Boosting Decision Tree(GBDT)framework were used to evaluate and classify rockburst intensity.First,a total of 301 rock burst data samples were obtained from a case database,and the data were preprocessed using synthetic minority over-sampling technique(SMOTE).Then,the rockburst evaluation models including GBDT,eXtreme Gradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Categorical Features Gradient Boosting(CatBoost)were established,and the optimal hyperparameters of the models were obtained through random search grid and five-fold cross-validation.Afterwards,use the optimal hyperparameter configuration to fit the evaluation models,and analyze these models using test set.In order to evaluate the performance,metrics including accuracy,precision,recall,and F1-score were selected to analyze and compare with other machine learning models.Finally,the trained models were used to conduct rock burst risk assessment on rock samples from a mine in Shanxi Province,China,and providing theoretical guidance for the mine's safe production work.The models under the GBDT framework perform well in the evaluation of rockburst levels,and the proposed methods can provide a reliable reference for rockburst risk level analysis and safety management. 展开更多
关键词 rockburst evaluation SMOTE oversampling random search grid K-fold cross-validation confusion matrix
在线阅读 下载PDF
基于在线聚类的多模型软测量建模方法 被引量:28
2
作者 李修亮 苏宏业 褚健 《化工学报》 EI CAS CSCD 北大核心 2007年第11期2834-2839,共6页
针对石化行业中软测量建模样本的特性,提出一种基于在线聚类和v-支持向量回归机(vSVR)的多模型软测量建模方法。在vSVR建模过程中,通过在线聚类算法改善了vSVR模型参数选择算法的稳定性,并用vSVR参数的先验知识和KKT条件实现模型参数的... 针对石化行业中软测量建模样本的特性,提出一种基于在线聚类和v-支持向量回归机(vSVR)的多模型软测量建模方法。在vSVR建模过程中,通过在线聚类算法改善了vSVR模型参数选择算法的稳定性,并用vSVR参数的先验知识和KKT条件实现模型参数的快速寻优,提高了模型的学习效率和精度。该建模方法在加氢裂化分馏塔装置的轻石脑油终馏点在线预测系统中取得了良好的效果。 展开更多
关键词 多模型 软测量 在线聚类 v-支持向量回归机 k-交叉验证算法
在线阅读 下载PDF
基于潜变量SVM的出行方式预测模型 被引量:5
3
作者 陈月霞 陈龙 +3 位作者 查奇芬 景鹏 谢君平 熊晓夏 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第6期1313-1317,共5页
为提高小样本下的出行方式选择模型的预测精度,提出了考虑低碳出行心理变量的支持向量机(SVM)算法.首先基于计划行为理论,考虑低碳出行心理因素,建立多原因多指标潜变量模型.然后将预测后的潜变量带入SVM分类器,构建了带潜变量的SVM选... 为提高小样本下的出行方式选择模型的预测精度,提出了考虑低碳出行心理变量的支持向量机(SVM)算法.首先基于计划行为理论,考虑低碳出行心理因素,建立多原因多指标潜变量模型.然后将预测后的潜变量带入SVM分类器,构建了带潜变量的SVM选择模型.最后,利用交叉验证优化所建模型参数,并以长三角地区城市居民为研究对象实证检验了模型性能.实证结果表明,所建带潜变量的SVM选择模型具有较好的预测效果,比不带潜变量的SVM选择模型的精度提高了4.54%,比传统的带潜变量的混合选择模型提高了2.56%,同时验证了小样本下模型仍然具有很高的精度.本研究为出行方式选择模型和低碳出行方式选择研究提供了一定的理论参考. 展开更多
关键词 混合选择模型 支持向量机 多原因多指标 计划行为理论 交叉验证算法
在线阅读 下载PDF
基于MLBO-KCV的微流控预测算法
4
作者 汪子晨 梁威 《压电与声光》 2025年第4期783-790,共8页
针对在激发兰姆波进行液滴操控实验时,不同体积液滴的运动距离因激发参数的噪声干扰而导致无法准确定位的问题,提出了一种加入贝叶斯优化算法的机器学习模型(MLBO)与K折交叉验证(KCV)相结合的MLBO-KCV算法。该算法拥有自动寻找模型最佳... 针对在激发兰姆波进行液滴操控实验时,不同体积液滴的运动距离因激发参数的噪声干扰而导致无法准确定位的问题,提出了一种加入贝叶斯优化算法的机器学习模型(MLBO)与K折交叉验证(KCV)相结合的MLBO-KCV算法。该算法拥有自动寻找模型最佳超参数组合的能力,通过高斯函数和采集函数提高模型的预测精准度,利用预定义的验证函数多次评估模型的预测结果。实验结果表明,MLBO-KCV算法的均方误差(MSE)和平均绝对误差(MAE)较经典单模型算法分别降低了40.39%~78.03%、26.77%~51.35%,决定系数(R^(2))提高了5.23%~14.58%,且R^(2)最高值为0.98。MLBO-KCV算法提高了液滴运动距离的预测精度及可靠性,为基于机器学习精准控制液滴进行定向药物输送和微流体芯片等领域提供了依据。 展开更多
关键词 兰姆波微流控 贝叶斯优化机器学习模型 K折交叉验证算法 距离预测 图形用户界面
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部