期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于特征选择和改进LSTM的风电机组叶片覆冰故障检测方法
1
作者 王威 苏洪军 +2 位作者 王海云 丁国栋 连昊 《可再生能源》 北大核心 2025年第8期1044-1050,共7页
随着风电规模的不断增加,风电机组关键部件的运行维护成为研究的热点。针对风电机组叶片覆冰问题,文章提出了一种基于特征选择和改进长短期记忆网络(LSTM)算法的风电机组叶片覆冰故障检测方法。该方法首先采用Relief算法进行特征选择,利... 随着风电规模的不断增加,风电机组关键部件的运行维护成为研究的热点。针对风电机组叶片覆冰问题,文章提出了一种基于特征选择和改进长短期记忆网络(LSTM)算法的风电机组叶片覆冰故障检测方法。该方法首先采用Relief算法进行特征选择,利用LSTM网络作为残差发生器,通过交叉预测模型对SCADA特征序列进行预测,得到预测值与真实值的特征残差;然后,从残差中提取5个隐含的数据特征,并导入序列分类模块进行覆冰检测;最后,将该方法与K近邻和随机森林算法进行对比。结果表明,文章提出的方法可以更准确地实现覆冰检测,验证了该方法的可行性。 展开更多
关键词 风电机组 叶片覆冰 特征选择 交叉预测与序列分类lstm 故障检测
在线阅读 下载PDF
基于经验模态分解和多分支LSTM网络汇率预测 被引量:6
2
作者 薛涛 丘森辉 +1 位作者 陆豪 秦兴盛 《广西师范大学学报(自然科学版)》 CAS 北大核心 2021年第2期41-50,共10页
作为一种新型信号变换算法,经验模态分解(empirical mode decomposition,EMD)能够解决傅里叶变换等方法受限于特定基函数的缺陷。本文针对人工神经网络对高频金融时间序列预测准确率不足的问题,结合EMD和韦布尔分布对金融时间序列进行... 作为一种新型信号变换算法,经验模态分解(empirical mode decomposition,EMD)能够解决傅里叶变换等方法受限于特定基函数的缺陷。本文针对人工神经网络对高频金融时间序列预测准确率不足的问题,结合EMD和韦布尔分布对金融时间序列进行预处理,提出一种基于经验模态分解和多分支长短期记忆网络的分类预测模型,用于从高频金融时间序列中提取有关价格走势的信息并对未来的价格运动趋势做出预测。通过对2009—2012年欧元兑美元汇率时间序列进行预测,实验结果表明,所提出的网络模型可以得到较高的预测准确率和计算速度,并且同普通LSTM网络相比,提高了泛化能力和模型稳定性。 展开更多
关键词 lstm网络 金融时间序列 汇率预测 分类模型 经验模态分解 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部