期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于声纹识别的变压器故障检测方法 被引量:1
1
作者 李章维 周浩 +1 位作者 郑文皓 陈毅恒 《浙江工业大学学报》 北大核心 2025年第3期293-298,共6页
由于传统的变压器故障检测方法通过专业技术人员根据设备运行声音判断故障类型与故障位置,存在一定的局限性和主观性,因此提出了一种利用变压器声音的纹理特征进行故障诊断的方法。在利用x-vector的基础上,针对变压器故障负样本数据获... 由于传统的变压器故障检测方法通过专业技术人员根据设备运行声音判断故障类型与故障位置,存在一定的局限性和主观性,因此提出了一种利用变压器声音的纹理特征进行故障诊断的方法。在利用x-vector的基础上,针对变压器故障负样本数据获取困难、数据量少的特点,引入抑制过拟合和改善交叉熵损失函数方法,解决内部数据分类不平衡的问题,准确实现变压器的故障识别。 展开更多
关键词 变压器故障 声纹识别 x-vector 交叉熵损失函数
在线阅读 下载PDF
基于FDTRP-ALDCNN的小样本轴承故障诊断方法
2
作者 王娜 刘佳林 王子从 《铁道科学与工程学报》 北大核心 2025年第9期4271-4283,共13页
针对滚动轴承在小样本条件下诊断精度低的问题,提出一种基于频域无阈值递归图与自适应线性可变卷积神经网络(frequency domain thresholdless recurrence plot-adaptive linear deformable convolutional neural network,FDTRP-ALDCNN)... 针对滚动轴承在小样本条件下诊断精度低的问题,提出一种基于频域无阈值递归图与自适应线性可变卷积神经网络(frequency domain thresholdless recurrence plot-adaptive linear deformable convolutional neural network,FDTRP-ALDCNN)的滚动轴承故障诊断方法。首先,使用快速傅里叶变换(fast fourier transform,FFT)将一维时域信号转为频域信号,并与无阈值递归图(thresholdless recurrence plot,TRP)相结合,以有效构建初始特征,提高模型输入质量;其次,采用线性可变卷积核(linear deformable convolutional kernel,LDConv)替换卷积神经网络中方形卷积核,从而能够根据采样数据的分布来调整卷积核形状,准确获取空间信息中的关键特征,提高小样本数据的利用率;再次,设计自适应交叉熵(adaptive cross entropy,ACE)损失函数,根据样本分类损失自适应调整分类器对难分与易分样本的拟合程度,增强难分样本损失在整体分类损失中的显著性,进一步提高小样本下的模型诊断精度;最后,采用CWRU滚动轴承数据集对所提方法进行3组仿真验证。对比仿真的结果表明,所提模型在不同小样本数量下均有较高的诊断准确率,最高可达到99.82%。而对2组不平衡数据集的泛化性分析可知,本模型的诊断准确率分别达到98.56%与99.3%,泛化能力优于其他模型,且具有良好的稳定性。并通过消融实验验证了FFT、LDConv与ACE损失函数对提高故障诊断精度的有效性。综上所述,所提方法能够有效诊断出小样本轴承故障,具有较高的实际应用价值。 展开更多
关键词 故障诊断 小样本 无阈值递归图 线性可变卷积核 卷积神经网络 交叉熵损失函数
在线阅读 下载PDF
图像分类卷积神经网络的反馈损失计算方法改进 被引量:17
3
作者 周非 李阳 范馨月 《小型微型计算机系统》 CSCD 北大核心 2019年第7期1532-1537,共6页
当前在图像分类领域,卷积神经网络主要通过反向传播算法训练权重和偏置.在参数的训练过程中,网络的实际输出与样本标签之间的反馈损失计算方式会影响到卷积神经网络对图像的最终分类性能.本文研究发现,当增大训练样本标签的维度,提高不... 当前在图像分类领域,卷积神经网络主要通过反向传播算法训练权重和偏置.在参数的训练过程中,网络的实际输出与样本标签之间的反馈损失计算方式会影响到卷积神经网络对图像的最终分类性能.本文研究发现,当增大训练样本标签的维度,提高不同类别标签间的最小汉明距离,并通过sigmoid激活函数结合交叉熵计算反馈损失时,所得到的卷积网络模型对图像的分类能力优于使用softmax激活函数结合独热编码计算反馈损失所得到的卷积网络模型的分类能力.本文使用多种卷积神经网络结构,并结合多个数据集进行训练和测试,所得到的仿真结果证明了本文观点的正确性. 展开更多
关键词 图像分类 卷积神经网络 sigmoid激活函数 交叉熵损失函数
在线阅读 下载PDF
基于聚焦损失与残差网络的远程监督关系抽取 被引量:5
4
作者 蔡强 李晶 郝佳云 《计算机工程》 CAS CSCD 北大核心 2019年第12期166-170,共5页
基于卷积神经网络的远程监督关系抽取方法提取的特征单一,且标准交叉熵损失函数未能较好处理数据集中正负样本比例不均衡的情况。为此,提出一种基于深度残差神经网络的远程监督关系抽取模型,通过改进交叉熵聚焦损失函数,提取句子中的深... 基于卷积神经网络的远程监督关系抽取方法提取的特征单一,且标准交叉熵损失函数未能较好处理数据集中正负样本比例不均衡的情况。为此,提出一种基于深度残差神经网络的远程监督关系抽取模型,通过改进交叉熵聚焦损失函数,提取句子中的深层语义特征,同时降低损失函数中负样本的权重,避免在NYT-Freebase标准数据集中引入NA关系类别的噪音。实验结果表明,该模型能增强深度残差神经网络对含噪音数据的表示学习能力,有效提高远程监督关系抽取任务的分类准确率。 展开更多
关键词 交叉熵损失函数 残差学习 远程监督模型 关系抽取 卷积神经网络
在线阅读 下载PDF
基于RetinaNet深度学习的煤矿带式运输机异物识别方法
5
作者 钟美华 钟国坚 曾志宏 《中国矿业》 北大核心 2025年第9期203-208,共6页
煤矿带式运输机工作环境复杂,针对环境图像难以有效区分异物与背景噪声,且依赖于固定特征的提取规则不适用于多样化形态的异物,进一步增加了异物识别的难度。因此,以提高煤矿带式运输机的工作效率和稳定性为目的,本文提出了一种基于Reti... 煤矿带式运输机工作环境复杂,针对环境图像难以有效区分异物与背景噪声,且依赖于固定特征的提取规则不适用于多样化形态的异物,进一步增加了异物识别的难度。因此,以提高煤矿带式运输机的工作效率和稳定性为目的,本文提出了一种基于RetinaNet深度学习的运输机异物识别方法。首先,分析RetinaNet深度学习模型的结构,结合交叉熵损失函数建立运输机样本候选区,采用RetinaNet深度学习算法对样本进行分类。通过多层次的卷积结构,RetinaNet能够捕捉到异物的细节特征,自动从复杂背景中提取异物的多层次特征。基于此,首先,通过引入权重系数的方式,区分难分样本和易分样本;然后,通过卷积和平均池化操作输出样本高频特征和低频特征;之后,建立运输机异物识别框,将样本特征输入其中,计算识别目标置信度、推导偏差函数,给出异物目标的高度、宽度及体积特征的损失函数;最后,采用加权方式融合偏置和所有特征损失函数,将异物特征作为对比值,输出异物识别结果。实验数据表明:该方法的损失函数最低仅为0.16,且未随训练样本数量的增加而出现明显波动;该方法能够精准识别出煤矿带式运输机上的异物,不存在漏识和误识的情况,且识别速度最高不超过0.8s。上述结果表明该方法能够精准、高效、稳定地识别异物。 展开更多
关键词 煤矿带式运输机 异物识别 RetinaNet深度学习 交叉熵损失函数 加权融合
在线阅读 下载PDF
基于CNN-XGBoost模型的多类型棉花叶片病害识别 被引量:1
6
作者 戴臻 费洪晓 《江苏农业科学》 北大核心 2024年第13期205-213,共9页
为提高棉花生产和质量,需要对棉花叶片病害进行及时和准确的识别。然而,现有研究方法往往只能处理少数几种常见的病害类型,而无法覆盖更多的病害种类。本研究提出一种基于CNN-XGBoost模型的多类型棉花叶片病害识别方法,该方法能够识别... 为提高棉花生产和质量,需要对棉花叶片病害进行及时和准确的识别。然而,现有研究方法往往只能处理少数几种常见的病害类型,而无法覆盖更多的病害种类。本研究提出一种基于CNN-XGBoost模型的多类型棉花叶片病害识别方法,该方法能够识别出21种不同的病害类型,涵盖了细菌、真菌、病毒、营养缺乏等多种因素导致的病害。首先,收集约1.2万张棉花叶片病害图像样本,构建一个包含多种类型病害的数据集,对数据集进行预处理和增强操作,增加数据的多样性和难度;其次,设计一个CNN模型,利用卷积层和池化层提取棉花叶片图像的特征向量,将CNN模型的输出作为XGBoost模型的输入,使用XGBoost模型对特征向量进行分类;最后,采用加权交叉熵损失函数作为优化目标,通过反向传播算法更新CNN模型和XGBoost模型的参数。结果表明,本研究提出的CNN-XGBoost模型在21种类型棉花叶片病害上都能达到高精度的识别,平均准确率达到0.98,远高于其他对比方法,为棉花生产者提供了一个实用和高效的植物病害诊断工具,有助于及时发现和处理棉花叶片病害,从而提高棉花产量。 展开更多
关键词 CNN-XGBoost 棉花叶片病害 多类型病害 加权交叉熵损失函数
在线阅读 下载PDF
电子监控部分遮挡目标单模态自监督信息挖掘技术 被引量:2
7
作者 周艳秋 高宏伟 +1 位作者 何婷 辛春花 《现代电子技术》 北大核心 2024年第10期47-51,共5页
针对电子监控视频中受遮挡目标识别难度高的问题,提出一种电子监控部分遮挡目标单模态自监督信息挖掘技术。为了得到目标的状态信息,利用遮挡检测方法判断监控视频中是否存在部分遮挡目标。当监控视频存在部分遮挡目标时,利用减法聚类... 针对电子监控视频中受遮挡目标识别难度高的问题,提出一种电子监控部分遮挡目标单模态自监督信息挖掘技术。为了得到目标的状态信息,利用遮挡检测方法判断监控视频中是否存在部分遮挡目标。当监控视频存在部分遮挡目标时,利用减法聚类方法进行特定目标的识别、跟踪或描述,并提供更准确和详细的目标特征信息。在此基础上,将交叉熵损失函数与软间隔三元组损失函数构建的监督遮挡目标特征学习判别损失函数作为部分遮挡目标信息挖掘的目标函数,在每个批次的电子监控样本中,搜寻最小距离的负样本对以及最大距离的正样本对,并通过反向传播优化参数。由此输入电子监控图像样本,通过前向传播输出得到电子监控部分遮挡目标单模态自监督信息挖掘结果。实验结果表明,所提出的技术可以有效挖掘电子监控部分遮挡目标,目标挖掘的mAP值高于0.9,能够为提升监控目标识别精度提供可靠依据。 展开更多
关键词 电子监控 遮挡检测 单模态自监督 信息挖掘 交叉熵损失函数 三元组损失函数
在线阅读 下载PDF
基于CNN-Attention-BP的降水发生预测研究 被引量:8
8
作者 吴香华 华亚婕 +2 位作者 官元红 王巍巍 刘端阳 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第2期148-155,共8页
在综合分析降水统计预测模型特点的基础上,提出一种基于Attention机制、卷积神经网络(CNN)和BP神经网络的CNN-Attention-BP组合模型,并对1961—2020年不同气候类型的长春站、白城站、延吉站夏季降水进行实证分析.首先,运用卷积神经网络... 在综合分析降水统计预测模型特点的基础上,提出一种基于Attention机制、卷积神经网络(CNN)和BP神经网络的CNN-Attention-BP组合模型,并对1961—2020年不同气候类型的长春站、白城站、延吉站夏季降水进行实证分析.首先,运用卷积神经网络对6—8月20—次日20时降水量、平均气压、平均风速、平均气温和平均相对湿度进行特征学习,利用Attention机制来确定气象影响因素对降水预测的权重;然后,使用BP神经网络进行降水发生预测,选用准确率、交叉熵损失函数和F1-score来综合评价CNN-Attention-BP组合模型的性能.最后,将单一的支持向量机、多层感知机和卷积神经网络模型与组合模型进行比较分析.结果表明,CNN-Attention-BP组合模型具有自主学习和关注更重要信息的特征,能够有效提高吉林省夏季降水发生模型的预测能力,在样本越均衡、降水频率越接近于0.5的站点,预测精度越高,准确率最高可达88.4%.CNN-Attention-BP组合模型的准确率相较于其他单一模型最高可以提高近17个百分点. 展开更多
关键词 降水预测 卷积神经网络 Attention机制 BP神经网络 交叉熵损失函数
在线阅读 下载PDF
一种基于类不平衡学习的情感分析方法 被引量:4
9
作者 李芳 曲豫宾 +2 位作者 陈翔 李龙 杨帆 《吉林大学学报(理学版)》 CAS 北大核心 2021年第4期929-935,共7页
针对网络评论中普遍存在的负面评论较少而影响力却较大的类不平衡问题,提出一种基于类不平衡学习的情感分析方法.该方法利用深度学习训练过程中的概率输出,以计算样例的信息熵作为影响因子构建交叉信息熵损失函数.在IMDB公开数据集上进... 针对网络评论中普遍存在的负面评论较少而影响力却较大的类不平衡问题,提出一种基于类不平衡学习的情感分析方法.该方法利用深度学习训练过程中的概率输出,以计算样例的信息熵作为影响因子构建交叉信息熵损失函数.在IMDB公开数据集上进行实验验证的结果表明,基于集成信息熵损失函数的双向长短期记忆网络能处理类不平衡问题;对数据的统计分析结果表明,该策略能提升基于双向长短期记忆网络的评论情感极性分类性能.针对AUC(area under curve)指标,使用集成信息熵损失函数的双向长短期记忆网络模型比未考虑类不平衡的深度学习模型在中位数上最多提升15.3%. 展开更多
关键词 文本分类 长短期记忆网络 类不平衡 交叉熵损失函数
在线阅读 下载PDF
基于改进YOLOv2模型的驾驶辅助系统实时行人检测 被引量:8
10
作者 白中浩 李智强 +1 位作者 蒋彬辉 王鹏辉 《汽车工程》 EI CSCD 北大核心 2019年第12期1416-1423,共8页
为解决驾驶辅助系统(ADAS)对复杂背景行人和小尺寸行人检测精度较低的问题,基于深度神经网络模型YOLOv2建立了ADAS实时行人检测模型YOLOv2-P。首先在特征提取网络中采用参数化修正线性单元激活函数,以从训练数据中自适应地学习参数,并... 为解决驾驶辅助系统(ADAS)对复杂背景行人和小尺寸行人检测精度较低的问题,基于深度神经网络模型YOLOv2建立了ADAS实时行人检测模型YOLOv2-P。首先在特征提取网络中采用参数化修正线性单元激活函数,以从训练数据中自适应地学习参数,并在行人检测网络中采用多层特征图融合方法,将低层特征图信息与高层特征图信息进行融合;然后使用交叉熵损失函数替代YOLOv2模型中的sigmoid激活函数,并对宽度、高度损失函数进行归一化处理;最后采用迭代自组织数据分析算法对行人数据集中行人边界框尺寸进行聚类。试验结果表明:相比于YOLOv2,YOLOv2-P对复杂背景行人及小尺寸行人的检测精度有明显提升,能够满足ADAS行人检测准确性和实时性需要。 展开更多
关键词 行人检测 驾驶辅助系统 参数化修正线性单元 交叉熵损失函数 迭代自组织数据分析算法
在线阅读 下载PDF
基于图神经网络的不平衡欺诈检测研究 被引量:1
11
作者 陈安琪 陈睿 +1 位作者 邝祝芳 黄华军 《计算机工程》 CAS CSCD 北大核心 2023年第11期150-159,共10页
现阶段图神经网络被广泛应用于欺诈检测,由于欺诈检测中往往存在类不平衡问题,导致基于图神经网络模型性能不佳。针对上述问题,设计一种基于图神经网络的不平衡欺诈检测模型。该模型细化了图结构数据中存在的邻域不平衡和中心不平衡两... 现阶段图神经网络被广泛应用于欺诈检测,由于欺诈检测中往往存在类不平衡问题,导致基于图神经网络模型性能不佳。针对上述问题,设计一种基于图神经网络的不平衡欺诈检测模型。该模型细化了图结构数据中存在的邻域不平衡和中心不平衡两个不平衡的概念。在邻域不平衡中,通过多层感知机和高斯核函数衡量中心节点与其邻域节点的非欧氏空间距离(相似度),基于马尔可夫决策动态更新采样阈值对邻域节点进行多层自适应欠采样,并在每一层中仅聚合其原始特征和前一层的隐藏嵌入得到中心节点的目标嵌入;在中心不平衡中,引入加权交叉熵损失函数为每个中心节点的损失设置动态权重以达到中心平衡。在Yelp和Amazon两个数据集上的实验结果表明,该模型的曲线下面积(AUC)、召回率(Recall)两个指标相较于最优基准模型均有显著提升,在两个数据集上的AUC和Recall分别提升了5.52%、5.42%和1.57%、4.31%。 展开更多
关键词 图神经网络 欺诈检测 类不平衡 马尔可夫决策 加权交叉熵损失函数
在线阅读 下载PDF
基于改进FCN双路径特征融合的局部放电图谱识别 被引量:1
12
作者 金玉 袁和金 《电子测量技术》 北大核心 2022年第24期132-136,共5页
针对电力设备局部放电图谱的识别问题,提出一种改进交叉熵损失函数的双路径全卷积神经网络模型。使用局放图谱作为模型输入,采用双路径的方式,两路使用不同大小卷积核分别提取图谱较深层和较浅层特征,然后进行特征融合。使用卷积层代替... 针对电力设备局部放电图谱的识别问题,提出一种改进交叉熵损失函数的双路径全卷积神经网络模型。使用局放图谱作为模型输入,采用双路径的方式,两路使用不同大小卷积核分别提取图谱较深层和较浅层特征,然后进行特征融合。使用卷积层代替全连接层,更多保留局放特征间的空间关联性。改进的交叉熵损失函数可以使模型更适用于数据集样本不均衡的情况。实验结果表明,改进FCN双路径特征融合识别方法准确率达到99.31%,可以准确识别局放图谱,且模型参数量更小。 展开更多
关键词 局部放电 卷积神经网络 特征融合 交叉熵损失函数
在线阅读 下载PDF
基于小规模数据集的柑橘树冠层施药情况的分类模型 被引量:2
13
作者 徐相华 林佳翰 +2 位作者 陆健强 陈宏泽 杨瑞帆 《华南农业大学学报》 CAS CSCD 北大核心 2021年第5期127-132,共6页
【目的】提升柑橘果园的智能化管理水平,快速无损获取柑橘树冠层的施药情况,改善小规模数据集导致施药情况分类模型易发生过拟合的问题。【方法】提出一种基于卷积神经网络的柑橘树冠层施药情况分类模型-VGG_C模型。模型以VGG模型核心... 【目的】提升柑橘果园的智能化管理水平,快速无损获取柑橘树冠层的施药情况,改善小规模数据集导致施药情况分类模型易发生过拟合的问题。【方法】提出一种基于卷积神经网络的柑橘树冠层施药情况分类模型-VGG_C模型。模型以VGG模型核心思想为基础进行构建,通过交叉熵损失函数优化,加速概率分布与真实分布的迭代过程,并在输出端引入不确定性度量计算以及在下采样模块中插入Droupout方法,降低由于数据较少而发生过拟合的概率。【结果】VGG_C模型针对训练集的分类损失值为0.44%,比ResNet和VGG模型分别降低了87%和91%;准确率为95.3%,比ResNet和VGG模型分别提高了5%和10%;验证集的预测平均准确率为96.4%。【结论】VGG_C模型通过多层卷积模型协同实现柑橘冠层热红外图像特征的高效提取,通过优化输出端结构提高了柑橘冠层施药情况分类模型在小数据集规模上的训练测试优度,可为柑橘树施药情况的智能化判断提供有效参考。 展开更多
关键词 柑橘 喷施药剂 红外热感图像 卷积神经网络 交叉熵损失函数
在线阅读 下载PDF
多变量数据驱动的化工过程质量相关故障监测
14
作者 秦绪光 王雪 +2 位作者 陈锋 李磊 宋维燕 《现代化工》 2025年第11期231-236,共6页
以多变量数据驱动为导向,分别对卷积神经网络(CNN)及交叉熵损失函数(CEL)进行改进优化,构建适用于复杂化工过程质量相关故障的监测模型——二维卷积神经网络(2DCNN)及基于类别加权的交叉熵损失函数(WCEL)。该方法能够将多变量数据转化... 以多变量数据驱动为导向,分别对卷积神经网络(CNN)及交叉熵损失函数(CEL)进行改进优化,构建适用于复杂化工过程质量相关故障的监测模型——二维卷积神经网络(2DCNN)及基于类别加权的交叉熵损失函数(WCEL)。该方法能够将多变量数据转化为若干样本矩阵,并以此作为2DCNN模型的输入,分别有效地捕捉矩阵行数和列数所表征的时空维度特征,从而实现高精准的质量相关故障监测;同时,嵌入损失函数——WCEL,自适应地动态调整2DCNN模型的学习率,从而解决故障类别分配不均衡问题。 展开更多
关键词 质量相关故障 化工过程 多变量数据 二维卷积神经网络 基于类别加权的交叉熵损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部