期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
基于交叉注意和跨尺度融合的车辆抛投垃圾识别
1
作者 陈云腾 孙振华 +1 位作者 周杰忻 刘志 《浙江工业大学学报》 CAS 北大核心 2024年第6期611-620,共10页
旨在实时交通监控视频中智能识别违反车辆投掷垃圾(TWV)行为。TWV不仅污染环境,而且存在大量潜在危险,尤其是在高速隧道场景中,严重影响行车安全。目前,视频中TWV行为仍主要依靠人工方式检查,既耗时又费力。为此,提出了一种基于深度学... 旨在实时交通监控视频中智能识别违反车辆投掷垃圾(TWV)行为。TWV不仅污染环境,而且存在大量潜在危险,尤其是在高速隧道场景中,严重影响行车安全。目前,视频中TWV行为仍主要依靠人工方式检查,既耗时又费力。为此,提出了一种基于深度学习的车辆抛投垃圾识别模型(VTWIM),结合交叉注意和跨尺度融合模型(CASF)、选择性搜索和非最大化抑制(NMS),实现了基于深度剩余网络的车辆垃圾识别方法(CASF-VTWI)。首先,通过选择性搜索将一个视频帧分割为多个区域,这些区域与标有位置框的可疑对象相匹配;然后,利用CASF进行抛掷垃圾的识别训练;最后,利用NMS移除了冗余位置框,保留了最优的位置框。所提方法较好地解决了车辆垃圾的智能识别问题,对实时交通监控视频进行的实验研究证明了模型和算法的有效性与优越性。 展开更多
关键词 车辆抛投垃圾 交叉注意和跨尺度融合 交通监控视频
在线阅读 下载PDF
基于双向交叉注意力的多尺度特征融合情感分类
2
作者 梁一鸣 范菁 柴汶泽 《计算机应用》 北大核心 2025年第9期2773-2782,共10页
针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机... 针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机制的情感分类模型M-BCA(Multi-scale BERT features with Bidirectional Cross Attention)。首先,从BERT的低层、中层和高层分别提取多尺度特征,以捕捉句子文本的表面信息、语法信息和深层语义信息;其次,利用三通道门控循环单元(GRU)进一步提取深层语义特征,从而增强模型对文本的理解能力;最后,为促进不同尺度特征之间的交互与学习,引入双向交叉注意力机制,从而增强多尺度特征之间的相互作用。此外,针对不平衡数据问题,设计数据增强策略,并采用混合损失函数优化模型对少数类别样本的学习。实验结果表明,在细粒度情感分类任务中,M-BCA表现优异。M-BCA在处理分布不平衡的多分类情感数据集时,它的性能显著优于大多数基线模型。此外,M-BCA在少数类别样本的分类任务中表现突出,尤其是在NLPCC 2014与Online_Shopping_10_Cats数据集上,MBCA的少数类别的Macro-Recall领先其他所有对比模型。可见,该模型在细粒度情感分类任务中取得了显著的性能提升,并适用于处理不平衡数据集。 展开更多
关键词 BERT 细粒度情感分类 尺度特征融合 数据增强 混合损失函数 双向交叉注意
在线阅读 下载PDF
基于多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合 被引量:1
3
作者 邸敬 梁婵 +2 位作者 任莉 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第7期754-764,共11页
针对目前红外与可见光图像融合存在特征提取不足、融合图像目标区域不显著、细节信息缺失等问题,提出了一种多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合方法。首先,设计了多尺度对比度增强模块,以增强目标区域强度... 针对目前红外与可见光图像融合存在特征提取不足、融合图像目标区域不显著、细节信息缺失等问题,提出了一种多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合方法。首先,设计了多尺度对比度增强模块,以增强目标区域强度信息利于互补信息的融合;其次,采用密集连接块进行特征提取,减少信息损失最大限度利用信息;接着,设计了一种跨维度交互注意力机制,有助于捕捉关键信息,从而提升网络性能;最后,设计了从融合图像到源图像的分解网络使融合图像包含更多的场景细节和更丰富的纹理细节。在TNO数据集上对提出的融合框架进行了评估实验,实验结果表明本文方法所得融合图像目标区域显著,细节纹理丰富,具有更优的融合性能和更强的泛化能力,主观性能和客观评价优于其他对比方法。 展开更多
关键词 红外与可见光图像融合 尺度对比度增强 模态交互注意力机制 分解网络
在线阅读 下载PDF
基于跨尺度特征融合CNN-Transformer神经网络的高压电缆表面缺陷检测
4
作者 魏占朋 许然然 +3 位作者 张华 熊钊 李申童 宋鹏先 《电力系统及其自动化学报》 北大核心 2025年第10期103-110,128,共9页
高压电缆接头剥削质量直接影响电力系统安全运行,准确检测电缆表面微小缺陷是实现电缆接头制备工艺优化与保障电网安全运行的关键技术挑战。为此,结合YOLOv7算法提出基于全局注意力机制与跨尺度特征融合的缺陷检测算法。在主干网络中引... 高压电缆接头剥削质量直接影响电力系统安全运行,准确检测电缆表面微小缺陷是实现电缆接头制备工艺优化与保障电网安全运行的关键技术挑战。为此,结合YOLOv7算法提出基于全局注意力机制与跨尺度特征融合的缺陷检测算法。在主干网络中引入SwinTransformer模块,有效增强模型全局特征提取能力和对微小缺陷的感知能力。通过跨尺度特征融合机制,直接融合不同尺度的特征表示,避免传统特征融合网络存在的信息丢失问题。针对电缆表面缺陷尺寸差异大的特点,采用K-means++算法重新聚类先验框,增强模型的多尺度适应性。实验结果表明,在高压电缆表面缺陷数据集上,所提算法mAP50达到91.6%,较原始YOLOv7算法提升4.5%,其中条纹划痕AP50为88.4%,较原始YOLOv7算法提升4.2%。与FasterR-CNN、YOLOv8、DETR等常用检测方法相比,所提算法mAP50分别提升了8.1%、2.0%、4.8%,实现了电缆表面缺陷的精确检测。 展开更多
关键词 缺陷检测 注意力机制 尺度特征融合 电缆剥削
在线阅读 下载PDF
基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型
5
作者 仲兆满 樊继冬 +3 位作者 张渝 王晨 吕慧慧 张丽玲 《智能系统学报》 北大核心 2025年第4期999-1009,共11页
在多模态情感分析任务中,现有方法由于忽视了图像与文本之间的情感关联性,导致融合特征存在大量冗余特征。为此,提出了一种基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型(convolutional cross-attention and cross-modal dyn... 在多模态情感分析任务中,现有方法由于忽视了图像与文本之间的情感关联性,导致融合特征存在大量冗余特征。为此,提出了一种基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型(convolutional cross-attention and cross-modal dynamic gating,CCA-CDG)。CCA-CDG通过引入卷积交叉注意力模块(convolutional cross-attention module,CCAM)来捕捉图像与文本间的一致性表达,获取图文之间的对齐特征;同时利用跨模态动态门控模块(cross-modal dynamic gating module,CDGM),根据图文之间的情感关联性动态调节情感特征的融合。此外,考虑到图文上下文信息对于理解情感的重要性,还设计了一个全局特征联合模块,将图文交互特征与全局特征权重融合,实现更可靠的情感预测。在MVSA-Single和MVSA-Multi数据集上进行实验验证,所提出的CCA-CDG能够有效改善多模态情感分析的效果。 展开更多
关键词 多模态融合 情感分析 情感关联性 注意力机制 卷积交叉注意 模态动态门控 全局特征联合 权重融合
在线阅读 下载PDF
基于跨尺度特征融合与注意力机制的遥感船舶检测 被引量:1
6
作者 汤永恒 郭璇 +2 位作者 孙水发 李昌振 张晶 《遥感信息》 CSCD 北大核心 2024年第5期29-37,共9页
针对常规目标检测算法对遥感船舶目标检测精度低且预测框不能将船舶目标紧密封装,为后续匹配计算带来极大误差等问题,提出一种跨尺度特征融合与注意力机制的遥感船舶检测算法。该算法通过HRNetV2_w40骨干网络提取高分辨率图像特征,并采... 针对常规目标检测算法对遥感船舶目标检测精度低且预测框不能将船舶目标紧密封装,为后续匹配计算带来极大误差等问题,提出一种跨尺度特征融合与注意力机制的遥感船舶检测算法。该算法通过HRNetV2_w40骨干网络提取高分辨率图像特征,并采用跨尺度融合特征金字塔模块对backbone提取的多级特征信息进行跨级融合,设计卷积注意力网络模块让网络模型在空间和通道两个维度产生注意力特征图信息以生成更加精细化特征图。同时,全新设计融合旋转角度信息的旋转目标损失函数使算法可有效检测任意方向船舶目标。实验结果表明,该算法能有效检测与识别遥感船舶目标,平均准确率达到74.8%,高于现有其他方法。此外,该算法很容易扩展到其他工业领域旋转目标检测任务中。 展开更多
关键词 深度学习 船舶检测 旋转检测 尺度特征融合 卷积注意
在线阅读 下载PDF
多尺度交叉注意力特征融合的语义分割网络 被引量:1
7
作者 张弘 高月 刘保洋 《传感器与微系统》 CSCD 北大核心 2024年第9期135-139,共5页
针对DeepLabv3+语义分割模型在解码阶段仅融合单尺度低级特征,高级与低级特征融合效果差,导致目标分割精度低的问题,本文基于注意力特征融合(AFF)结构和DeepLabv3+网络,提出了CAAF-DeepLabv3+分割网络。首先,该网络引入不同阶段的多尺... 针对DeepLabv3+语义分割模型在解码阶段仅融合单尺度低级特征,高级与低级特征融合效果差,导致目标分割精度低的问题,本文基于注意力特征融合(AFF)结构和DeepLabv3+网络,提出了CAAF-DeepLabv3+分割网络。首先,该网络引入不同阶段的多尺度浅层特征来优化空间位置信息。其次,采用交叉方式改进AFF,获得交叉注意力特征融合(CAFF)结构,提高特征间的信息交互,且通过学习高级和低级特征在通道上的重要程度,增强显著性特征,克服语义和尺度不一的特征融合问题,以获取高分辨率和高语义信息的融合特征。在道路标线数据集上进行训练和测试的结果表明,对于目标轮廓复杂、小尺寸分布较多的情况,该网络与UNet、PSPNet、DeepLabv3+、MobileNetv2-DeepLabv3+、AFF-DeepLabv3+网络相比较,平均交并比(MIoU)值和平均像素准确率(MPA)值达到最高,漏分割和错误分割明显降低。 展开更多
关键词 DeepLabv3+ 语义分割 尺度 交叉注意力特征融合
在线阅读 下载PDF
融合场景特征的跨模态图像美学评价
8
作者 牛玉贞 陈珊珊 +1 位作者 李悦洲 刘文犀 《计算机辅助设计与图形学学报》 北大核心 2025年第7期1270-1282,共13页
现有的图像美学评价方法通常依赖图像本身而忽略了用户评论中的丰富语义信息,因此在性能方面呈现一定的局限性.一些研究尝试结合用户评论辅助进行图像美学评价,但未能充分地挖掘图像特征,且未能较好地对图像-文本特征的复杂关系进行建模... 现有的图像美学评价方法通常依赖图像本身而忽略了用户评论中的丰富语义信息,因此在性能方面呈现一定的局限性.一些研究尝试结合用户评论辅助进行图像美学评价,但未能充分地挖掘图像特征,且未能较好地对图像-文本特征的复杂关系进行建模,导致图像-文本信息利用不充分且交互不够紧密.为解决上述问题,提出一种融合场景特征的跨模态图像美学评价方法.由于图像场景通常会影响人们对图像的美学评价,因此首先提取图像的场景特征和美学特征,并使用多尺度特征融合模块将两者深度融合;考虑图像-文本特征之间的内在相关性,使用多头交叉注意力机制在图像特征和文本特征之间进行交叉注意力计算,将图像-文本模态信息进行交互融合;最后将融合后的跨模态特征用于美学评价.在通用的大型图像美学评价数据集AVA上的广泛实验结果表明,所提方法在ACC,SRCC和PLCC指标上分别达到了86.96%,0.8523和0.8648,超越了文中对比的跨模态图像美学评价方法. 展开更多
关键词 图像美学评价 模态学习 场景特征 多头交叉注意力机制 尺度特征融合
在线阅读 下载PDF
夜间红外与可见光多尺度信息注入式图像融合
9
作者 杨艳春 李佳龙 +1 位作者 李毅 王泽煜 《光学精密工程》 北大核心 2025年第2期282-297,共16页
针对低光照条件下红外与可见光图像融合由于忽视光照而导致纹理细节不清晰、视觉感知较差等问题,本文提出了一种低光增强和语义注入式多尺度红外与可见光图像融合方法。首先,设计了一种适合低光增强的网络,通过残差模型反复迭代,实现夜... 针对低光照条件下红外与可见光图像融合由于忽视光照而导致纹理细节不清晰、视觉感知较差等问题,本文提出了一种低光增强和语义注入式多尺度红外与可见光图像融合方法。首先,设计了一种适合低光增强的网络,通过残差模型反复迭代,实现夜间场景下可见光图像的增强。然后,采用一种基于Nest架构的特征提取器作为网络的编码与解码器,其中深层特征能捕获图像的复杂结构和语义信息,设计了一种语义先验学习模块,通过交叉注意力进一步提取深层红外与可见光图像的语义信息,采用语义注入单元,将增强特征逐级注入了各个尺度。其次,设计了梯度增强分支,主流特征先通过混合注意力,再由主流分出Sobel算子流和Laplacian算子流,以此增强融合图像梯度。最后,通过解码器中同层之间的密集连接和不同层之间的跳跃连接,对各尺度特征进行重构。实验结果表明,本文在视觉信息保真度、互信息、差异相关系数和空间频率,较九种对比方法分别平均提高了23.1%,16.3%,18%,39.8%,有效提升了低光环境下融合图像的质量,有助于提升高级视觉任务的性能。 展开更多
关键词 红外与可见光图像融合 尺度融合网络 低光增强 交叉注意 语义注入
在线阅读 下载PDF
基于双重注意力机制的多尺度指代目标分割方法
10
作者 胡梦楠 王蓉 +1 位作者 张文靖 张琪 《计算机辅助设计与图形学学报》 北大核心 2025年第1期148-156,共9页
针对指代分割任务中视觉和语言间缺乏充分的跨模态交互、不同尺寸的目标空间和语义信息存在差异的问题,提出了基于双重注意力机制的多尺度指代目标分割方法.首先,利用语言表达中不同类型的信息关键词来增强视觉和语言特征的跨模态对齐,... 针对指代分割任务中视觉和语言间缺乏充分的跨模态交互、不同尺寸的目标空间和语义信息存在差异的问题,提出了基于双重注意力机制的多尺度指代目标分割方法.首先,利用语言表达中不同类型的信息关键词来增强视觉和语言特征的跨模态对齐,并使用双重注意力机制捕捉多模态特征间的依赖性,实现模态间和模态内的交互;其次,利用语言特征作为引导,从其他层次的特征中聚合与目标相关的视觉信息,进一步增强特征表示;然后利用双向ConvLSTM以自下而上和自上而下的方式逐步整合低层次的空间细节和高层次的语义信息;最后,利用不同膨胀因子的空洞卷积融合多尺度信息,增加模型对不同尺度分割目标的感知能力.此外,在UNC,UNC+,GRef和ReferIt基准数据集上进行实验,实验结果表明,文中方法在UNC,UNC+,GRef和ReferIt上的oIoU指标分别提高了1.81个百分点、1.26个百分点、0.84个百分点和0.32个百分点,广泛的消融研究也验证了所提方法中各组成部分的有效性. 展开更多
关键词 指代目标分割 模态交互 特征增强 注意力机制 尺度融合
在线阅读 下载PDF
基于多尺度注意力机制的无人机小目标检测算法 被引量:2
11
作者 冯迎宾 郭枭尊 晏佳华 《兵工学报》 北大核心 2025年第1期12-21,共10页
针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster ... 针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster Block_C2f,EF_C2f),替换YOLOv8网络中的C2f模块,提高网络对小目标特征的提取能力;在特征融合网络中增加P1检测层,并设计一种跨尺度特征融合结构(Bi-Path Aggregation Network,BPAN),融合小目标特征信息;增加一个微小目标检测头,使用SIoU Loss作为边界框损失函数,提升小目标检测精度和网络收敛速度。在公开数据集VisDrone2019上进行实验验证。验证结果表明:与YOLOv8s算法相比,新算法在检测精度上提升了6.9%、mAP50提升了9.1%,模型参数量减少了44.6%,检测速度为28帧/s,新算法在小目标检测领域具有一定的实用性。 展开更多
关键词 尺度注意力机制 YOLOv8s算法 特征提取 尺度特征融合 小目标检测
在线阅读 下载PDF
基于融合注意力和特征增强的跨模态行人重识别 被引量:3
12
作者 黄驰涵 沈肖波 《南京信息工程大学学报》 CAS 北大核心 2024年第4期451-460,共10页
跨模态行人重识别是一项具有挑战性的任务,目的是在可见光和红外模式之间匹配行人图像,以便在犯罪调查和智能视频监控应用中发挥重要作用.为了解决跨模态行人重识别任务中对细粒度特征提取能力不强的问题,本文提出一种基于融合注意力和... 跨模态行人重识别是一项具有挑战性的任务,目的是在可见光和红外模式之间匹配行人图像,以便在犯罪调查和智能视频监控应用中发挥重要作用.为了解决跨模态行人重识别任务中对细粒度特征提取能力不强的问题,本文提出一种基于融合注意力和特征增强的行人重识别模型.首先,利用自动数据增强技术缓解不同摄像机的视角、尺度差异,并基于交叉注意力多尺度Vision Transformer,通过处理多尺度特征生成具有更强区分性的特征表示;接着,提出通道注意力和空间注意力机制,在融合可见光和红外图像特征时学习对区分特征重要的信息;最后,设计损失函数,采用基于自适应权重的难三元组损失,增强了每个样本之间的相关性,提高了可见光和红外图像对不同行人的识别能力.在SYSU-MM01和RegDB数据集上进行大量实验,结果表明,本文提出方法的mAP分别达到了68.05%和85.19%,相较之前的工作性能有所提升,且通过消融实验和对比分析验证了本文模型的先进性和有效性. 展开更多
关键词 行人重识别 模态 交叉注意 特征提取 尺度
在线阅读 下载PDF
融合PVTv2和DenseNet121的双注意力视网膜病变分级算法
13
作者 梁礼明 钟奕 +1 位作者 陈康泉 王成斌 《光电工程》 北大核心 2025年第4期15-29,共15页
针对视网膜眼底病变图像数据集类间分布不均和病灶区域识别困难的问题,提出一种融合金字塔视觉变压器(pyramid vision transformer v2,PVTv2)和DenseNet121双注意力视网膜病变分级算法。首先,该算法经由PVTv2和DenseNet121组成的双分支... 针对视网膜眼底病变图像数据集类间分布不均和病灶区域识别困难的问题,提出一种融合金字塔视觉变压器(pyramid vision transformer v2,PVTv2)和DenseNet121双注意力视网膜病变分级算法。首先,该算法经由PVTv2和DenseNet121组成的双分支网络,对视网膜图像的全局和局部信息进行初步提取;其次,在PVTv2和DenseNet121输出处分别采用空间通道协同注意力模块和多频率多尺度模块,优化局部特征细节,突显微小病灶特征,增强模型对复杂微小病变特征敏感性和病灶的定位感知;再次设计神经元交叉融合模块,建立病灶区域宏观布局和微观纹理信息之间的远程依赖关系,进而提高视网膜病变分级准确率;最后,利用混合损失函数缓解样本分布不均所导致的各等级之间模型关注度不平衡情况。在IDRID和APTOS 2019数据集上进行实验验证,其二次加权系数分别为90.68%和90.35%,IDRID数据集上的准确率和APTOS 2019数据集ROC曲线下方面积分别为80.58%和93.22%。实验结果表明,所提算法在视网膜病变分级领域具有一定应用价值。 展开更多
关键词 视网膜病变分级 空间通道协同注意力模块 多频率多尺度注意力模块 神经元交叉融合模块
在线阅读 下载PDF
基于梯度注意力机制与交叉神经网络的红外与可见光图像融合
14
作者 孙希霞 邓林威 潘甦 《南京邮电大学学报(自然科学版)》 北大核心 2024年第3期17-25,共9页
针对现有的基于深度学习的红外与可见光图像融合算法存在的难以区分重要信息与无关信息的问题,提出了一种基于梯度注意力机制与细节保留交叉神经网络(Detail Preserving Cross Network,DPCN)的红外与可见光图像融合方法。首先,将改进的... 针对现有的基于深度学习的红外与可见光图像融合算法存在的难以区分重要信息与无关信息的问题,提出了一种基于梯度注意力机制与细节保留交叉神经网络(Detail Preserving Cross Network,DPCN)的红外与可见光图像融合方法。首先,将改进的梯度注意力机制引入到DPCN,引导神经网络尽可能关注可见光图像的纹理细节和红外图像的目标信息,同时利用DPCN加强红外图像和可见光图像之间的信息交互。然后,提出了一种基于多尺度细节保留模块的解码器重建融合图像。最后,设计了一种基于辅助判别器的自适应损失函数。实验结果表明:所提方法可保留更清晰的边缘及目标信息,在主观和客观评价方面均优于对比方法。 展开更多
关键词 图像融合 注意力机制 细节保留交叉神经网络 尺度图像重建
在线阅读 下载PDF
局部全局特征耦合与交叉尺度注意的医学图像融合 被引量:3
15
作者 张炯 王丽芳 +3 位作者 蔺素珍 秦品乐 米嘉 刘阳 《计算机工程》 CAS CSCD 北大核心 2023年第3期238-247,共10页
现有基于深度学习的多模态医学图像融合方法存在全局特征表示能力不足的问题。对此,提出一种基于局部全局特征耦合与交叉尺度注意的医学图像融合方法。该方法由编码器、融合规则和解码器三部分组成。编码器中采用并行的卷积神经网络(CNN... 现有基于深度学习的多模态医学图像融合方法存在全局特征表示能力不足的问题。对此,提出一种基于局部全局特征耦合与交叉尺度注意的医学图像融合方法。该方法由编码器、融合规则和解码器三部分组成。编码器中采用并行的卷积神经网络(CNN)和Transformer双分支网络分别提取图像的局部特征与全局表示。在不同尺度下,通过特征耦合模块将CNN分支的局部特征嵌入Transformer分支的全局特征表示中,最大程度地结合互补特征,同时引入交叉尺度注意模块实现对多尺度特征表示的有效利用。编码器提取待融合原始图像的局部、全局以及多尺度特征表示,根据融合规则融合不同源图像的特征表示后再输入到解码器中生成融合图像。实验结果表明,与CBF、PAPCNN、IFCNN、DenseFuse和U2Fusion方法相比,该方法在特征互信息、空间频率、边缘信息传递因子、结构相似度、感知图像融合质量这5个评价指标上分别平均提高6.29%、3.58%、29.01%、5.34%、5.77%,融合图像保留了更清晰的纹理细节和更高的对比度,便于疾病的诊断与治疗。 展开更多
关键词 医学图像融合 编码器-解码器网络 Transformer网络 特征耦合 交叉尺度注意
在线阅读 下载PDF
基于跨尺度特征融合自注意力的图像描述方法 被引量:2
16
作者 王鸣展 冀俊忠 +1 位作者 贾奥哲 张晓丹 《计算机科学》 CSCD 北大核心 2022年第10期191-197,共7页
近年来,基于自注意力机制的编码器-解码器框架已经成为主流的图像描述模型。然而,编码器中的自注意力只建模低尺度特征的视觉关系,忽略了高尺度视觉特征中的一些有效信息,从而影响了生成描述的质量。针对该问题,文中提出了一种基于跨尺... 近年来,基于自注意力机制的编码器-解码器框架已经成为主流的图像描述模型。然而,编码器中的自注意力只建模低尺度特征的视觉关系,忽略了高尺度视觉特征中的一些有效信息,从而影响了生成描述的质量。针对该问题,文中提出了一种基于跨尺度特征融合自注意力的图像描述方法。该方法在进行自注意力运算时,将低尺度和高尺度的视觉特征进行跨尺度融合,从视觉角度上提高自注意力关注的范围,增加有效视觉信息,减少噪声,从而学习到更准确的视觉语义关系。在MS COCO数据集上的实验结果表明,所提方法能够更精确地捕获跨尺度视觉特征间的关系,生成更准确的描述。特别地,该方法是一种通用的方法,通过与其他基于自注意力的图像描述方法相结合,能进一步提高模型性能。 展开更多
关键词 图像描述 注意 尺度特征融合
在线阅读 下载PDF
结合跨尺度特征融合与瓶颈注意力模块的轻量型红外小目标检测网络 被引量:9
17
作者 林再平 李博扬 +6 位作者 李淼 王龙光 吴天昊 罗伊杭 肖超 李若敬 安玮 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2022年第6期1102-1112,共11页
提出一种结合跨尺度特征融合与瓶颈注意力模块的轻量型单帧红外小目标检测网络。该网络在不引入额外神经元的前提下,直接在编码层和解码层之间进行高频多尺度特征交互,从而维持小目标在网络深层的响应幅值,实现小目标浅层空间结构特征... 提出一种结合跨尺度特征融合与瓶颈注意力模块的轻量型单帧红外小目标检测网络。该网络在不引入额外神经元的前提下,直接在编码层和解码层之间进行高频多尺度特征交互,从而维持小目标在网络深层的响应幅值,实现小目标浅层空间结构特征与深层高级语义特征之间的交互融合。同时,该网络在编码器瓶颈处级联轻量型混合注意力模块,进一步增强目标特征在网络深层的响应幅值。实验结果表明,该网络能有效抑制复杂背景杂波,并以较低参数量实现红外小目标检测。 展开更多
关键词 红外小目标检测 轻量型算法 尺度融合 瓶颈注意力模块
在线阅读 下载PDF
基于注意机制和多尺度跨模态融合的RGB-D显著性检测
18
作者 崔志强 冯正勇 +1 位作者 王峰 刘强 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第6期893-902,共10页
针对基于深度卷积神经网络的RGB-D显著性检测性能差等问题,提出利用注意机制和多尺度跨模态融合进行RGB-D显著性检测的方法.首先采用多尺度残差注意模块对骨干网络提取的特征进行预处理;然后提出多尺度跨模态融合策略,对高层RGB特征和... 针对基于深度卷积神经网络的RGB-D显著性检测性能差等问题,提出利用注意机制和多尺度跨模态融合进行RGB-D显著性检测的方法.首先采用多尺度残差注意模块对骨干网络提取的特征进行预处理;然后提出多尺度跨模态融合策略,对高层RGB特征和深度特征进行融合,获得初始显著图;最后采用边界细化模块细化初始显著图中目标的边界,使最终显著图包含敏锐的边界和完整的突出目标.在5个基准数据集上与10种先进方法进行实验的结果表明,所提方法在4个评价指标上均处于前3名;尤其是在NJUD和SIP数据集上,该方法在4个指标上提升了0.5%~1.5%. 展开更多
关键词 图像处理 显著性检测 注意机制 尺度模态融合
在线阅读 下载PDF
基于特征融合和注意力的驾驶员吸烟目标检测
19
作者 王晓强 李科岑 +2 位作者 李雷孝 王鑫鹏 杨锦帆 《计算机工程与设计》 北大核心 2024年第11期3337-3344,共8页
由于香烟目标较小,图像分辨率较低,目前传统的目标检测算法不足以支撑对香烟的检测,为警戒驾驶员在驾驶时吸烟出现的安全问题,提出一种驾驶员吸烟检测算法。结合SSD目标检测模型,在其骨干网络中引入CSP架构;利用反卷积操作,将有效特征... 由于香烟目标较小,图像分辨率较低,目前传统的目标检测算法不足以支撑对香烟的检测,为警戒驾驶员在驾驶时吸烟出现的安全问题,提出一种驾驶员吸烟检测算法。结合SSD目标检测模型,在其骨干网络中引入CSP架构;利用反卷积操作,将有效特征层进行融合;在GAM注意力机制上改进其通道子模块,结合最大池化和平均池化,抑制与香烟不相关的特征。模型在自制驾驶员吸烟数据集上的识别mAP达94.93%,具有较好的鲁棒性以及泛化能力。 展开更多
关键词 驾驶员吸烟检测 阶段局部网络 特征融合 注意力机制 尺度检测 目标检测 深度学习
在线阅读 下载PDF
基于平行多尺度时空图卷积网络的三维人体姿态估计算法
20
作者 杨红红 刘泓希 +1 位作者 张玉梅 吴晓军 《软件学报》 北大核心 2025年第5期2151-2166,共16页
针对基于图卷积神经网络(GCN)的人体姿态估计方法不能充分聚合关节点时空特征、限制判别性特征提取的问题,构造基于平行多尺度时空图卷积的网络模型(PMST-GNet),提高三维人体姿态估计的性能.该模型首先设计对角占优的时空注意力图卷积(D... 针对基于图卷积神经网络(GCN)的人体姿态估计方法不能充分聚合关节点时空特征、限制判别性特征提取的问题,构造基于平行多尺度时空图卷积的网络模型(PMST-GNet),提高三维人体姿态估计的性能.该模型首先设计对角占优的时空注意力图卷积(DDA-STGConv),构建跨域时空邻接矩阵,对骨架关节点信息进行基于自约束和注意力机制约束的建模,增强节点间的信息交互;然后,通过设计图拓扑聚合函数构造不同的图拓扑结构,以DDA-STGConv为基本单元构建平行多尺度子网络模块(PM-SubGNet);最后,为了更好地提取骨架关节的上下文信息,设计多尺度特征交叉融合模块(MFEB),实现平行子图网络之间多尺度信息的交互,提高GCN的特征表示能力.在主流3D姿态估计数据集Human3.6M和MPI-INF-3DHP数据集上的对比实验结果表明,所提PMST-GNet模型在三维人体姿态估计中具有较好的效果,优于Sem-GCN、GraphSH、UGCN等当前基于GCN网络的主流算法. 展开更多
关键词 三维人体姿态估计 对角占优的时空注意力图卷积 平行多尺度子网络 尺度特征交叉融合
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部