期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融入交叉注意力编码的皮肤病变分割网络 被引量:2
1
作者 李大湘 杨福杰 +1 位作者 刘颖 唐垚 《光学精密工程》 EI CAS CSCD 北大核心 2024年第4期609-621,共13页
由于卷积操作的局限性,现有的皮肤病变图像分割网络无法对图像中的全局上下文信息建模,导致其无法有效捕获图像的目标结构信息,本文设计了一个融入交叉自注意力编码的U型混合网络,用于皮肤病变图像分割。首先,将设计的多头门控位置交叉... 由于卷积操作的局限性,现有的皮肤病变图像分割网络无法对图像中的全局上下文信息建模,导致其无法有效捕获图像的目标结构信息,本文设计了一个融入交叉自注意力编码的U型混合网络,用于皮肤病变图像分割。首先,将设计的多头门控位置交叉自注意力编码器引入到U型网络的最后两个层级中,使其能够在图像中学习语义信息的长期依赖关系,弥补卷积操作全局建模能力的不足;其次,在跳跃连接部分引入一个新的位置通道注意力机制,用于编码融合特征的通道信息并保留位置信息,提高网络捕获目标结构的能力;最后,设计一个正则化Dice损失函数,使网络能够在假阳性和假阴性之间权衡,提高网络的分割结果。基于ISBI2017和ISIC2018数据集的对比实验结果表明,本文网络的Dice分别为91.48%和91.30%,IoU分别为84.42%和84.12%,分割精度在整体上优于其他网络,且具有较低的参数量和计算复杂度,即本文网络能够高效地分割皮肤病变图像的目标区域,可为皮肤疾病辅助诊断提供帮助。 展开更多
关键词 医学图像分割 皮肤病变 交叉注意力编码 位置通道注意力
在线阅读 下载PDF
基于Transformer交叉注意力的文本生成图像技术 被引量:6
2
作者 谈馨悦 何小海 +2 位作者 王正勇 罗晓东 卿粼波 《计算机科学》 CSCD 北大核心 2022年第2期107-115,共9页
近年来,以生成对抗网络为基础的从文本生成图像方法的研究取得了一定的进展。文本生成图像技术的关键在于构建文本信息和视觉信息间的桥梁,促进网络模型生成与对应文本描述一致的逼真图像。目前,主流的方法是通过预训练文本编码器来完... 近年来,以生成对抗网络为基础的从文本生成图像方法的研究取得了一定的进展。文本生成图像技术的关键在于构建文本信息和视觉信息间的桥梁,促进网络模型生成与对应文本描述一致的逼真图像。目前,主流的方法是通过预训练文本编码器来完成对输入文本描述的编码,但这些方法在文本编码器中未考虑与对应图像的语义对齐问题,独立对输入文本进行编码,忽略了语言空间与图像空间之间的语义鸿沟问题。为解决这一问题,文中设计了一种基于交叉注意力编码器的对抗生成网络(CAE-GAN),该网络通过交叉注意力编码器,将文本信息与视觉信息进行翻译和对齐,以捕捉文本与图像信息之间的跨模态映射关系,从而提升生成图像的逼真度和与输入文本描述的匹配度。实验结果表明,在CUB和coco数据集上,与当前主流的方法DM-GAN模型相比,CAE-GAN模型的IS(Inception Score)分数分别提升了2.53%和1.54%,FID (Fréchet Inception Distance)分数分别降低了15.10%和5.54%,由此可知,CAE-GAN模型生成图像的细节更加完整、质量更高。 展开更多
关键词 文本描述生成图像 生成对抗网络 交叉注意力编码 图像生成 计算机视觉
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部