期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
基于特征交叉注意力机制融合的轴承故障诊断方法
1
作者 赵国超 刘崇德 +2 位作者 宋宇宁 金鑫 李伟华 《振动与冲击》 北大核心 2025年第12期228-237,共10页
为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convo... 为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convolutional neural network,CNN)和双向时间卷积网络(bidirectional temporal convolutional network,BiTCN)提取时频特征,通过交叉注意力机制(cross-attention mechanism,CA)融合时频特征的能力,充分提取原始信号故障特征,利用全连接层实现滚动轴承故障类型的精确诊断。试验研究表明:在含信噪比为9.32 dB、标准差为2.98的高斯白噪声的环境下,使用CNN-BiTCN-CA模型轴承故障分类准确率为99.88%,相较于使用CNN、BiTCN和结合自注意力机制的卷积神经网络(CNN with self-attention mechanism,CNN-SA)诊断轴承故障,准确率分别提升约22.79%、4.85%和4.19%;在引入信噪比为3.31 dB、标准差为5.96的高斯白噪声时,该模型仍然可以达到96.12%的诊断准确率。CNN-BiTCN-CA模型能够深入提取轴承信号中的故障特征,有效提高故障分类准确性。 展开更多
关键词 滚动轴承 故障诊断 双向时间卷积网络(BiTCN) 时频融合 交叉注意力机制(ca)
在线阅读 下载PDF
基于孪生网络和交叉注意力机制的空域和JPEG图像隐写分析
2
作者 张倩倩 李浩 +2 位作者 张祎 马媛媛 罗向阳 《计算机学报》 北大核心 2025年第6期1305-1326,共22页
近年来,深度学习在图像隐写分析任务中表现出了优越的性能。然而,此类方法在捕获图像中微弱的隐写噪声时,往往会因下采样过程中大量关键细节信息的丢失,导致在检测空域和JPEG隐写图像时难以同时实现高检测准确率。为此,本文基于孪生神... 近年来,深度学习在图像隐写分析任务中表现出了优越的性能。然而,此类方法在捕获图像中微弱的隐写噪声时,往往会因下采样过程中大量关键细节信息的丢失,导致在检测空域和JPEG隐写图像时难以同时实现高检测准确率。为此,本文基于孪生神经网络对图像进行分区域细粒度学习,同时利用交叉注意力机制进一步增强模型全局信息感知能力,提出一种跨通道交叉注意力增强的隐写分析方法(CES-Net)。首先,采用孪生神经网络作为主干网对图像进行分区域学习,以细致地感知空域和JPEG图像的像素信息和微弱的隐写噪声,同时,设计了多样化的高通滤波器和多层卷积作为网络预处理层来获取丰富且高质量的隐写噪声残差;接着,改进了特征提取部分,提出了跨通道交叉注意力网络,使模型提取到更多因隐写嵌入对图像像素相关性造成扰动的隐写特征,用于基于秘密噪声残差等弱信息的隐写图像分类任务;最后,融合子网络学习到的不同区域图像的分类特征,并输入全连接层组成的分类模块对载体和载密图像进行分类,提升检测效果。在隐写和隐写分析领域常用的图像数据集BOSSBase-1.01和BOWs2上进行了大量实验,结果表明,CES-Net方法与现有方法相比,对于空域和JPEG图像的多种主流隐写算法均能达到目前最优的检测准确率,其中,对多种空域隐写算法(WOW、S-UNIWARD和HILL)在不同嵌入比率下生成的载密图像,检测准确率最高分别提升1.27%~25.61%、2.1%~21.73%和1.69%~23.46%;对JPEG图像自适应隐写算法J-UNIWARD在不同嵌入比率下生成的载密图像,CES-Net方法对两种质量因子(QF=75和QF=85)的JPEG图像隐写检测准确率最高分别提升2.34%和2.06%。 展开更多
关键词 隐写分析 隐写 孪生网络 交叉注意力机制 信息隐藏
在线阅读 下载PDF
基于注意力机制的木材交叉场纹孔特征识别方法
3
作者 王新洲 李俊源 +4 位作者 王清波 席靖宇 王宇轩 衡利辰 潘彪 《林业工程学报》 北大核心 2025年第4期87-94,共8页
交叉场纹孔作为木材显微构造中的一个重要特征,在木材构造研究和树种识别中具有重要作用。以针叶材为研究对象,基于计算机视觉技术对交叉场纹孔特征快速提取方法展开研究,从而实现在向系统传入木材径切面切片图像后,即可快速得到交叉场... 交叉场纹孔作为木材显微构造中的一个重要特征,在木材构造研究和树种识别中具有重要作用。以针叶材为研究对象,基于计算机视觉技术对交叉场纹孔特征快速提取方法展开研究,从而实现在向系统传入木材径切面切片图像后,即可快速得到交叉场纹孔识别结果。首先采集48种针叶材树种的径切面图像构建数据集,通过训练并比较YOLOv4、YOLOv4-Tiny,以及主干特征提取网络更换为ResNet50和MobileNetv3的YOLOv4-Tiny模型后,选用表现较优的YOLOv4-Tiny,并将其结合SENet、ECANet、CBAM 3种注意力机制进行比较分析。研究结果表明:ECANet表现最好,对于窗格状、云杉型、柏木型、杉木型、松木型5种交叉场纹孔类型的识别准确率分别为98.2%,85.0%,88.4%,92.9%,80.0%。通过Grad-CAM可视化分析,发现模型对于窗格状和杉木型的预测框定位最为准确,而对于柏木型的预测置信度相对较低,在射线薄壁细胞与轴向管饱相交边界不明显的情况下,模型的预测效果较差。综上所述,使用YOLOv4-Tiny模型结合注意力机制进行交叉场纹孔的识别是可行的,未来的工作可以集中于对深度学习神经网络结构的进一步优化,以提高模型在复杂情况下的识别准确率。 展开更多
关键词 木材微观构造 交叉场纹孔 深度学习 目标检测 注意力机制
在线阅读 下载PDF
基于边缘增强的交叉注意力医学影像分割方法
4
作者 陆秋 张云磊 +1 位作者 邵铧泽 黄琳 《桂林理工大学学报》 北大核心 2025年第1期111-119,共9页
为了在复杂的腹部多器官MRI和CT医学影像中解决目标区域与背景的边缘误分割问题,提出一种以ResUNet网络为基架,包含二维分轴的交叉注意力机制和两阶段边缘增强模块的网络模型(REAUp-L)。第1阶段的边缘信息增强模块用于下采样阶段,以更... 为了在复杂的腹部多器官MRI和CT医学影像中解决目标区域与背景的边缘误分割问题,提出一种以ResUNet网络为基架,包含二维分轴的交叉注意力机制和两阶段边缘增强模块的网络模型(REAUp-L)。第1阶段的边缘信息增强模块用于下采样阶段,以更好地提取边缘信息;第2阶段的不确定性概率边缘区域增强模块用于上采样阶段,以更好地保留边缘信息和降低噪声造成的误差;跳跃连接阶段使用一种二维分轴交叉注意力机制,以更好地捕获全局依赖关系。在腹部多器官数据集上进行的实验结果表明:该网络模型较基于UNet改进的3种主流网络模型在Dice和IoU评价指标中都有了一定的提升;边缘增强能有效提取医学影像的边缘信息,得到更加清晰的边缘曲线,有利于进一步提升分割性能。 展开更多
关键词 医学影像分割 交叉注意力机制 不确定性 像素点概率机制
在线阅读 下载PDF
基于ConvNeXt和可变形交叉注意力的多模态3D目标检测方法
5
作者 周鹏 宋志强 +2 位作者 胡凯 宋利鹏 李明阳 《电子测量技术》 北大核心 2025年第12期63-70,共8页
近年来,随着新能源汽车的快速发展,3D目标检测作为自动驾驶技术的核心基础正变得愈发重要。融合雷达点云与图像等多模态信息的策略,能够显著提升目标检测的准确性与鲁棒性。受BEVDet启发,本研究提出了一种基于BEV(鸟瞰图)视角的改进多... 近年来,随着新能源汽车的快速发展,3D目标检测作为自动驾驶技术的核心基础正变得愈发重要。融合雷达点云与图像等多模态信息的策略,能够显著提升目标检测的准确性与鲁棒性。受BEVDet启发,本研究提出了一种基于BEV(鸟瞰图)视角的改进多模态融合3D目标检测方法。该方法采用ConvNeXt网络结合FPN-DCN结构高效提取图像特征,并通过可变形交叉注意力机制实现图像与点云数据的深度融合,从而进一步提升模型的检测精度。在nuScenes自动驾驶数据集上的实验表明,本研究模型性能优异,在测试集上的NDS达到了64.9%,显著超越了大多数现有检测方法。 展开更多
关键词 自动驾驶 3D目标检测 多模态融合 可变形交叉注意力机制
在线阅读 下载PDF
结合小波变换与注意力机制的轴承故障诊断
6
作者 赵玲 孟阳 +2 位作者 蒋振霖 吕颖 王航 《振动.测试与诊断》 北大核心 2025年第3期430-437,616,共9页
针对传统一维轴承振动信号特征表达效果较弱、轴承故障数据时频特征提取困难及其诊断精度较低等问题,提出一种基于小波变换与注意力机制网络(wavelet transform and attention mechanism net,简称WTA-Net)的轻量化轴承故障诊断方法。首... 针对传统一维轴承振动信号特征表达效果较弱、轴承故障数据时频特征提取困难及其诊断精度较低等问题,提出一种基于小波变换与注意力机制网络(wavelet transform and attention mechanism net,简称WTA-Net)的轻量化轴承故障诊断方法。首先,通过小波变换将滚动轴承的一维振动时序信号转化为二维时频图;其次,针对网络训练时梯度消失的问题,提出改进的轻量化骨干网络R-ResNet18提取二维时频图特征;然后,在网络不同尺度的特征层嵌入时空注意力机制(convolutional block attention module,简称CBAM),使网络更加关注二维时频图的关键信息特征;最后,采用标签平滑的交叉熵损失函数来对网络模型进行训练。实验结果表明,所提出方法能够精准地辨识不同故障类型和故障严重程度,在凯斯西储大学轴承数据集10个分类任务中可达到99.9%的分类精度,模型应用在辛辛那提大学智能维护系统(intelligent maintenance systems,简称IMS)轴承数据集上的分类精度达到了99.9%,提取的特征信息区分度高,具有良好的泛化性和鲁棒性。 展开更多
关键词 小波变换 交叉熵损失 注意力机制 故障诊断 振动信号
在线阅读 下载PDF
基于交叉注意力的车载环视系统外参标定算法
7
作者 黄书隽 林春雨 +2 位作者 覃雷栋 金智勇 赵耀 《北京交通大学学报》 北大核心 2025年第3期137-146,共10页
针对车载环视系统的多相机外参标定问题,本文提出一种基于交叉注意力机制的外参标定算法.首先通过残差卷积模块独立提取多视角图像的多尺度特征,以捕捉图像中的细节信息;其次,利用交叉注意力模块学习各相机图像的全局特征及其相邻相机... 针对车载环视系统的多相机外参标定问题,本文提出一种基于交叉注意力机制的外参标定算法.首先通过残差卷积模块独立提取多视角图像的多尺度特征,以捕捉图像中的细节信息;其次,利用交叉注意力模块学习各相机图像的全局特征及其相邻相机图像之间的特征关系,从而增强特征表达能力;再次,通过特征融合模块整合残差卷积模块和交叉注意力模块的特征,并回归外参参数;最后,在两种数据集上从性能评价和消融实验角度对模型进行验证.研究结果表明:与现有基于车道线和纹理的外参标定算法相比,本文算法在不同环境下具有更好的泛化性和鲁棒性,其性能指标和鸟瞰图拼接可视化结果均有显著提升;与现有的外参标定算法相比,所提出算法在绝对重投影误差和绝对光度误差上分别达到3.1和16.7,相较于目前最优的深度学习算法弱监督外参参数标定网络(Weakly-supervised Extrinsic Self-calibration Network,WESNet)分别提升了8.82%和8.74%.该研究成果可为车载环视系统的外参在线标定提供技术支撑. 展开更多
关键词 环视系统 深度学习 交叉注意力机制 外参标定
在线阅读 下载PDF
基于多模态交叉注意力的阿尔茨海默症辅助诊断研究
8
作者 李舟 刘永彬 +4 位作者 欧阳纯萍 张江涛 潘雪 江璐 钟进 《北京大学学报(自然科学版)》 北大核心 2025年第4期629-638,共10页
为了对阿尔茨海默症和轻度认知障碍患者进行准确的辅助诊断,提出一种利用非对称交叉注意力机制进行多模态融合的阿尔茨海默症多分类诊断框架MAMDF,以便更好地揭示临床数据和医疗成像数据之间的关系。针对计算机辅助诊断工作中很少提及... 为了对阿尔茨海默症和轻度认知障碍患者进行准确的辅助诊断,提出一种利用非对称交叉注意力机制进行多模态融合的阿尔茨海默症多分类诊断框架MAMDF,以便更好地揭示临床数据和医疗成像数据之间的关系。针对计算机辅助诊断工作中很少提及的两种轻度认知障碍亚型,结合频域转换器和Transformer,提出一种新颖的深度特征提取方法,用于处理特征融合。该方法能够捕获融合特征的内部联系,获取更丰富的多模态联合表示,从而使模型在两种轻度认知障碍亚型上的诊断表现更好。在ADNI数据集上实验结果表明,与其他方法相比,该模型取得更高的准确率和F1值,可以更有效地处理多模态数据融合,挖掘不同模态医疗数据间的深层特征关系,从而能更好地整合并分析阿尔茨海默症患者的多模态信息。 展开更多
关键词 多模态深度学习 阿尔茨海默症诊断 交叉注意力机制
在线阅读 下载PDF
基于交叉多头注意力的查询式文本摘要生成
9
作者 何东欢 李旸 王素格 《中文信息学报》 北大核心 2025年第7期138-147,共10页
生成是一项根据给定文档和查询,生成与查询相关摘要的任务。该文将查询式摘要生成任务转换为阅读理解任务,将文档与查询进行交互,建立了基于交叉多头注意力的Transformer架构的多源指针生成式摘要新模型。该模型通过BERT预训练模型,建... 生成是一项根据给定文档和查询,生成与查询相关摘要的任务。该文将查询式摘要生成任务转换为阅读理解任务,将文档与查询进行交互,建立了基于交叉多头注意力的Transformer架构的多源指针生成式摘要新模型。该模型通过BERT预训练模型,建立文档、查询和摘要的嵌入表示,再在Transformer架构中,通过交叉的多头注意力机制,建立查询与文档的交互深层语义表示。在此基础上,使用多源指针生成网络,使生成的摘要与文档和查询内容具有语义一致性和表达连贯性。最后,在查询式文本摘要生成数据集Debatepedia和Querysum-data上,与已有方法进行对比实验,实验结果验证了该文摘要生成模型CMAT-PG的有效性。 展开更多
关键词 查询式文本摘要生成 机器阅读理解 交叉多头注意力机制 多源指针生成网络
在线阅读 下载PDF
融合多注意力机制的语义调整风格迁移网络
10
作者 张彩灯 徐杨 +1 位作者 莫寒 冯明文 《计算机工程与应用》 北大核心 2025年第8期204-214,共11页
风格迁移是一种计算机视觉技术,旨在将一幅图像的风格迁移到另一幅图像上,从而创造出拥有新风格的图像。但当前任意风格迁移网络中还存在一些问题,如融合后的风格化图像语义不清晰以及整体风格不一致等。为了解决这些问题,提出了一种新... 风格迁移是一种计算机视觉技术,旨在将一幅图像的风格迁移到另一幅图像上,从而创造出拥有新风格的图像。但当前任意风格迁移网络中还存在一些问题,如融合后的风格化图像语义不清晰以及整体风格不一致等。为了解决这些问题,提出了一种新的多注意力风格迁移网络MatST。该网络结合了语义调整的方法,通过引入一系列注意力机制来改进风格迁移的效果。提出了RCCAB模块,通过结合交叉卷积和通道注意力机制,解决图像定位和细节表示的问题。结合窗口自注意力、重叠交叉窗口注意力OCAB和多头注意力块MHAB,设计了多注意力模块MAB作为Transformer编码器的子层。MAB模块从多个维度提取图像特征,解决图像网格化和风格化不细致的问题。设计了风格化图像语义调整器,通过反馈传播的方式来调整风格化图像的语义信息,生成语义清晰且更符合人眼感知的风格化图像。实验结果表明,相对于StyTr2网络,MatST网络在COCO数据集上内容损失降低0.1725,同时风格损失减少0.0757。经实验验证,该网络在获得较好风格化图像的同时,能够保留清晰的内容语义,具有良好的任意风格迁移效果。 展开更多
关键词 风格迁移 语义调整 注意力机制 交叉卷积
在线阅读 下载PDF
基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型
11
作者 仲兆满 樊继冬 +3 位作者 张渝 王晨 吕慧慧 张丽玲 《智能系统学报》 北大核心 2025年第4期999-1009,共11页
在多模态情感分析任务中,现有方法由于忽视了图像与文本之间的情感关联性,导致融合特征存在大量冗余特征。为此,提出了一种基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型(convolutional cross-attention and cross-modal dyn... 在多模态情感分析任务中,现有方法由于忽视了图像与文本之间的情感关联性,导致融合特征存在大量冗余特征。为此,提出了一种基于卷积交叉注意力与跨模态动态门控的多模态情感分析模型(convolutional cross-attention and cross-modal dynamic gating,CCA-CDG)。CCA-CDG通过引入卷积交叉注意力模块(convolutional cross-attention module,CCAM)来捕捉图像与文本间的一致性表达,获取图文之间的对齐特征;同时利用跨模态动态门控模块(cross-modal dynamic gating module,CDGM),根据图文之间的情感关联性动态调节情感特征的融合。此外,考虑到图文上下文信息对于理解情感的重要性,还设计了一个全局特征联合模块,将图文交互特征与全局特征权重融合,实现更可靠的情感预测。在MVSA-Single和MVSA-Multi数据集上进行实验验证,所提出的CCA-CDG能够有效改善多模态情感分析的效果。 展开更多
关键词 多模态融合 情感分析 情感关联性 注意力机制 卷积交叉注意力 跨模态动态门控 全局特征联合 权重融合
在线阅读 下载PDF
基于交叉注意力机制的多特征行人重识别 被引量:1
12
作者 邬心怡 邓志良 +2 位作者 刘云平 董娟 李嘉琦 《南京信息工程大学学报》 CAS 北大核心 2024年第4期461-471,共11页
针对现有的行人重识别方法难以避免环境噪声导致的特征提取不精确、易被误认为行人特征等问题,提出一种基于动态卷积与注意力机制的行人多特征融合分支网络.首先,由于拍摄时存在光照变化、人体姿势调整以及物体遮挡等不确定因素,提出使... 针对现有的行人重识别方法难以避免环境噪声导致的特征提取不精确、易被误认为行人特征等问题,提出一种基于动态卷积与注意力机制的行人多特征融合分支网络.首先,由于拍摄时存在光照变化、人体姿势调整以及物体遮挡等不确定因素,提出使用动态卷积替换ResNet50中的静态卷积得到具有更强鲁棒性的Dy-ResNet50模型;其次,考虑到拍摄行人图片的视角有较大差异且存在行人被物体遮挡的情况,提出将自注意力机制与交叉注意力机制嵌入骨干网络;最后,将交叉熵损失函数和难样本三元损失函数共同作为模型损失函数,在DukeMTMC-ReID、Market-1501和MSMT17公开数据集上进行实验,并与主流网络模型进行比较.结果表明:在3个公开数据集上,本文所提模型的Rank-1(第一次命中)与mAP(平均精度均值)相比当前主流模型均有所提升,具有较高的识别准确率. 展开更多
关键词 行人重识别 动态卷积 注意力机制 交叉注意力机制
在线阅读 下载PDF
融合注意力机制LSTM网络的城市交叉口信号控制 被引量:1
13
作者 陈国梁 石晴 +1 位作者 黄亚飞 曾昭汰 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第4期196-203,共8页
随着国内机动车保有量的快速提升,城市道路交叉口场景在高密度车流情况下易导致长距离拥堵。为降低交叉口车流拥堵长度,深度强化学习逐渐应用于交叉口信号的控制。而现有交叉口信号控制策略存在对车流状态信息的权重特征欠考虑及时序特... 随着国内机动车保有量的快速提升,城市道路交叉口场景在高密度车流情况下易导致长距离拥堵。为降低交叉口车流拥堵长度,深度强化学习逐渐应用于交叉口信号的控制。而现有交叉口信号控制策略存在对车流状态信息的权重特征欠考虑及时序特征难提取的问题,因此基于深度Q学习(deep Q-learning,DQL)算法提出了一种改进DQL算法,利用注意力机制增强长距离拥堵状态信息的权值,进一步采用长短期记忆网络(long short-term memory,LSTM)学习车流的历史数据,改进了DQL算法对数据不同部分重要性考虑不足及历史数据信息提取欠佳的问题。实验结果表明,所提改进DQL算法与原算法相比,能够降低20%的车辆累计等待时间并且减少21.2%的车辆平均排队数目,提高了交叉口的车辆通行效率。 展开更多
关键词 交叉口信号控制 深度强化学习 注意力机制 LSTM 通行效率
在线阅读 下载PDF
基于梯度注意力机制与交叉神经网络的红外与可见光图像融合
14
作者 孙希霞 邓林威 潘甦 《南京邮电大学学报(自然科学版)》 北大核心 2024年第3期17-25,共9页
针对现有的基于深度学习的红外与可见光图像融合算法存在的难以区分重要信息与无关信息的问题,提出了一种基于梯度注意力机制与细节保留交叉神经网络(Detail Preserving Cross Network,DPCN)的红外与可见光图像融合方法。首先,将改进的... 针对现有的基于深度学习的红外与可见光图像融合算法存在的难以区分重要信息与无关信息的问题,提出了一种基于梯度注意力机制与细节保留交叉神经网络(Detail Preserving Cross Network,DPCN)的红外与可见光图像融合方法。首先,将改进的梯度注意力机制引入到DPCN,引导神经网络尽可能关注可见光图像的纹理细节和红外图像的目标信息,同时利用DPCN加强红外图像和可见光图像之间的信息交互。然后,提出了一种基于多尺度细节保留模块的解码器重建融合图像。最后,设计了一种基于辅助判别器的自适应损失函数。实验结果表明:所提方法可保留更清晰的边缘及目标信息,在主观和客观评价方面均优于对比方法。 展开更多
关键词 图像融合 注意力机制 细节保留交叉神经网络 多尺度图像重建
在线阅读 下载PDF
基于高斯偏置自注意力和交叉注意力的医学图像分割模型
15
作者 罗会兰 郭宇辰 《计算机科学》 CSCD 北大核心 2024年第S02期456-464,共9页
为解决医学图像分割中目标之间存在特征差异、不同切片图像中存在同一解剖结构的相似表征和器官与背景的区分度低造成冗余信息过多的问题,提出了一种基于高斯偏置自注意力和交叉注意力的网络模型(Gaussian bias and Contextual cross At... 为解决医学图像分割中目标之间存在特征差异、不同切片图像中存在同一解剖结构的相似表征和器官与背景的区分度低造成冗余信息过多的问题,提出了一种基于高斯偏置自注意力和交叉注意力的网络模型(Gaussian bias and Contextual cross Attention U-Net,GCA-UNet)。采用残差模块建立空间先验假设,通过高斯偏置自注意力&外注意力模块的高斯偏置自注意力来学习空间先验假设和强化相邻区域的特征表示,并利用外注意力机制学习同一样本下不同切片之间的相关性;上下文交叉注意力门控利用多尺度特征提取来强化结构和边界信息,同时对上下文语义信息进行重新校准并筛除冗余信息。实验结果表明,在Synapse腹腔CT多器官分割数据集和ACDC心脏MRI数据集上,GCA-UNet网络的分割精度指标Mean Dice分别达到了81.37%和91.69%,在Synapse数据集上边界分割精度指标Mean hd95达到16.01。相比其他先进医学影像分割模型,GCA-Unet分割精度更高,具有更清晰的组织边界。 展开更多
关键词 医学图像分割 U型网络 高斯偏置 注意力机制 上下文交叉注意力门控
在线阅读 下载PDF
基于TCN-Bi-GRU和交叉注意Transformer的多模态情感识别 被引量:1
16
作者 李嘉华 陈景霞 白义民 《陕西科技大学学报》 北大核心 2025年第1期161-168,共8页
多模态语音情感识别是近年来在自然语言处理和机器学习领域备受关注的研究方向之一,不同模态的数据存在异构性和不一致性,将不同模态信息有效地融合起来并学习到高效的表示形式是一个挑战.为此,本文提出了一种新的基于时序信息建模和交... 多模态语音情感识别是近年来在自然语言处理和机器学习领域备受关注的研究方向之一,不同模态的数据存在异构性和不一致性,将不同模态信息有效地融合起来并学习到高效的表示形式是一个挑战.为此,本文提出了一种新的基于时序信息建模和交叉注意力的多模态语音情感识别模型.首先采用时间卷积网络(Time Convolutional Network,TCN)提取语音、文本和视频数据的深层时序特征,使用双向门控递归单元(Bidirectional Gated Recurrent Unit,Bi-GRU)捕捉序列数据的上下文信息,提高模型对序列数据的理解能力.然后基于交叉注意力机制和Transformer构建多模态融合网络,用于挖掘并捕获音频、文本和视觉特征之间交互的情感信息.此外,在训练过程中引入弹性网络正则化(Elastic Net Regularization)防止模型过拟合,最后完成情感识别任务.在IEMOCAP数据集上,针对快乐、悲伤、愤怒和中性四类情感的分类实验中,准确率分别为87.6%、84.1%、87.5%、71.5%,F1值分别为85.1%、84.3%、87.4%、71.4%.加权平均精度为80.75%,未加权平均精度为82.80%.结果表明,所提方法实现了较好的分类性能. 展开更多
关键词 语音识别 多模态情感识别 时间卷积网络 交叉注意力机制 弹性网络
在线阅读 下载PDF
基于图注意力机制的无地图场景轨迹预测方法 被引量:2
17
作者 刘建敏 林晖 汪晓丁 《计算机工程》 CAS CSCD 北大核心 2024年第7期144-153,共10页
现有的轨迹预测工作大多依赖于高精地图,但高精地图的采集耗时长、成本高、处理复杂,难以快速适应智能交通的大面积普及。为解决无地图场景下车辆轨迹预测问题,提出一种基于多模态数据时空特征的轨迹预测方法。构建多个历史轨迹时空交互... 现有的轨迹预测工作大多依赖于高精地图,但高精地图的采集耗时长、成本高、处理复杂,难以快速适应智能交通的大面积普及。为解决无地图场景下车辆轨迹预测问题,提出一种基于多模态数据时空特征的轨迹预测方法。构建多个历史轨迹时空交互图,交叉使用时间和空间注意力并进行深度融合,以建模道路上车辆之间的时空关联性。在此基础上,利用残差网络进行多目标多模态轨迹生成。在真实数据集Argoverse 2上进行模型的训练和测试,实验结果表明,相较于CRAT-Pred方法,该模型在单模态预测方面最小平均位移误差、最小最终位移误差和未命中率指标分别提升了3.86%、3.89%、0.48%,在多模态预测方面各项指标分别提升了0.78%、0.96%、0.42%。该方法能够有效地捕捉车辆移动轨迹的时间和空间特征,并可在自动驾驶等相关领域得到有效应用。 展开更多
关键词 多模态任务 轨迹预测 时空特征 注意力机制 交叉注意力
在线阅读 下载PDF
基于内容引导注意力的车道线检测网络
18
作者 刘登峰 郭文静 陈世海 《浙江大学学报(工学版)》 北大核心 2025年第3期451-459,共9页
为了有效利用注意力机制以提高车道线检测的准确性,提出基于内容引导注意力的车道线检测网络(CGANet).通过设计内容引导注意力机制(CGA),增强捕捉上下文信息的能力,强调编码在特征中更有用的信息,从而削弱无关信息的影响.为了减轻尺度... 为了有效利用注意力机制以提高车道线检测的准确性,提出基于内容引导注意力的车道线检测网络(CGANet).通过设计内容引导注意力机制(CGA),增强捕捉上下文信息的能力,强调编码在特征中更有用的信息,从而削弱无关信息的影响.为了减轻尺度差异对模型性能的影响,提出均衡特征金字塔网络(BFPN),以实现多尺度特征的均衡融合.引入ROI(RegionofInterest)提取器,以解决无视觉线索问题.在损失函数中添加交叉熵损失作为辅助分类损失,激励模型生成更加清晰的概率分布.在多个车道线检测数据集上进行实验验证,结果表明,与跨层细化网络(CLRNet)算法相比,所提方法在CULane、Tusimple和CurveLanes数据集上的F1指标分别提升0.65、0.18和0.29个百分点. 展开更多
关键词 无人驾驶技术 车道线检测 注意力机制 多尺度特征融合 交叉熵损失
在线阅读 下载PDF
融合轮廓增强和注意力机制的改进GaitSet步态识别方法 被引量:4
19
作者 陈万志 唐浩博 王天元 《电子测量与仪器学报》 CSCD 北大核心 2024年第1期203-210,共8页
针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将... 针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将其作为神经网络模型的输入特征,增强了人体外观的表示。其次在提取特征的过程中引入注意力机制,增强模型的特征提取能力,从而提高步态识别的精度。最后在CASIA-B和OU-MVLP数据集上进行实验,所提方法的平均Rank-1准确率分别为87.7%和88.1%。特别是在最复杂的穿大衣行走条件下,相较于GaitSetv2算法,准确率提升了6.7%,表明所提出方法具有更强的准确性。此外,所提方法几乎没有增加额外的参数量、计算复杂度和推理时间,说明其各模块的快速性。 展开更多
关键词 步态识别 交叉视角 深度学习 轮廓增强 注意力机制
在线阅读 下载PDF
引入注意力机制的后交叉韧带断裂的智能辅助诊断
20
作者 李玳 王天牧 +4 位作者 张思 谢福贵 刘辛军 聂振国 刘振龙 《中国运动医学杂志》 CAS CSCD 北大核心 2022年第11期833-840,共8页
目的:通过分析行走过程的足底压力数据,研究足底压力信息与后交叉韧带断裂的映射关系,从而实现借助足底压力对后交叉韧带断裂进行快速、准确的智能辅助诊断。方法:回顾性研究了北京大学第三医院2015至2017年收治的69名单纯左侧后交叉韧... 目的:通过分析行走过程的足底压力数据,研究足底压力信息与后交叉韧带断裂的映射关系,从而实现借助足底压力对后交叉韧带断裂进行快速、准确的智能辅助诊断。方法:回顾性研究了北京大学第三医院2015至2017年收治的69名单纯左侧后交叉韧带断裂患者、69名单纯右侧后交叉韧带患者,以及63名健康志愿者在行走过程中的足底压力数据。通过归一化等方法对足底压力信息进行预处理,然后通过引入注意力机制,采用自注意力结构,建立深度神经网络模型,实现对足底压力信息中隐式信息的特征编码与提取,并基于完整步态过程中足底压力最大值特征,对膝关节后交叉韧带断裂做出智能辅助诊断。结果:在数据处理后,得到1208段单纯左侧后交叉韧带断裂、1096段单纯右侧后交叉韧带断裂,以及964段健康人的足底压力数据,随机选择90%作为训练集,10%作为测试集。经过训练的神经网络在测试集上,对单侧后交叉韧带断裂的预测精度达到了92.02%。在测试集上,模型的曲线下面积(AUC)值达到了0.9820,显著高于使用传统卷积神经网络(CNN)方法得到的88.50%的预测精度和0.9218的AUC值。在可解释性方面,通过对训练过程的足底压力分布梯度进行可视化操作,可以观察到所提出的神经网络准确地提取了足底压力的边缘特征和重点压力特征区域。结论:借助采用了注意力机制的深度神经网络,能够有效地提取行走过程中足底压力信息的空间和时序特征,最终实现对后交叉韧带断裂的辅助智能诊断。这种基于人工智能的诊断方法具备显著的临床应用与研究价值。 展开更多
关键词 智能诊断 交叉韧带断裂 足底压力 注意力机制 特征感知
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部