期刊文献+
共找到587篇文章
< 1 2 30 >
每页显示 20 50 100
基于参数优化多核支持向量机的光伏功率预测算法 被引量:1
1
作者 贺亦琛 师长立 +2 位作者 郭小强 贺伟 韩涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期394-404,共11页
准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处... 准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。 展开更多
关键词 光伏 预测 主成分分析 支持向量 灰狼优化算法
在线阅读 下载PDF
基于改进核函数的支持向量机天然气脱硫装置故障诊断方法
2
作者 何宇琪 张波 +1 位作者 王俊超 熊鹏 《天然气与石油》 2024年第4期94-100,共7页
针对传统脱硫故障诊断方法反应慢、诊断准确率低的问题,根据Mercer理论,改进了支持向量机(Support Vector Machine,SVM)的核函数及其参数,建立了一个由多项式核函数、Sigmoid核函数和高斯径向基核函数复合成的改进核函数,在此基础上提... 针对传统脱硫故障诊断方法反应慢、诊断准确率低的问题,根据Mercer理论,改进了支持向量机(Support Vector Machine,SVM)的核函数及其参数,建立了一个由多项式核函数、Sigmoid核函数和高斯径向基核函数复合成的改进核函数,在此基础上提出了一种基于改进核函数的SVM天然气脱硫装置故障诊断方法。相对于传统SVM,改进SVM体现了各单一核函数的优点,并具有更好的学习效率及诊断准确率,在小样本数据条件下仍然具有较好的泛化能力。利用HYSYS软件建模并与现场数据进行对比实验,由实验结果可知改进SVM的误差率降低到传统SVM误差率的约30%,验证了新方法能有效提高脱硫装置故障诊断的准确率和效率。研究结果有助于天然气脱硫装置故障诊断系统工作的智能化开展,同时也为故障诊断方法的研究提供了借鉴。 展开更多
关键词 改进函数 支持向量 HYSYS 天然气脱硫 故障诊断
在线阅读 下载PDF
基于Optuna框架的L_(p)范数约束下多核支持向量机在违约风险预测中的应用
3
作者 郑怡昕 王重仁 《现代电子技术》 北大核心 2024年第6期147-153,共7页
针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学... 针对违约数据存在数据量大、维度多、不平衡及噪声大等缺点,提出一种改进的支持向量机方法,即基于Optuna框架的L_(p)范数约束的代价敏感的多核支持向量机(L_(p)-Optuna-SVM)。该方法采用成本矩阵对不同预测错误赋予不同数值,通过多核学习引入多核混合核函数组合;同时采用Optuna优化框架对犯错成本、核函数的参数和权重实现了自动化的调优过程;还在核函数权重上引入L_(p)范数约束,以提高模型对噪声和异常数据的鲁棒性。最后,对4种常用的基础核函数组合的L_(p)-Optuna-SVM进行探讨,并与单核支持向量机以及K邻近法、逻辑回归、高斯贝叶斯进行对比。结果表明,在给定数据集上,L_(p)-Optuna-SVM在违约数据上的g-mean和AUC均高于其他算法,并且在加了不同方差的噪声数据集上,该算法整体依旧保持较好的鲁棒性。 展开更多
关键词 支持向量 Optuna优化框架 L_(p)范数约束 学习 不平衡数据集 违约风险预测
在线阅读 下载PDF
基于核支持向量机的电力系统暂态稳定评估模型
4
作者 刘艳 杜成康 +3 位作者 吴春 杨燕 白中状 邓涛 《无线电工程》 2024年第12期2780-2788,共9页
随着计算机技术的发展,诸多领域开始向智能化方向转型,空间数据智能技术的应用日益受到关注。电力系统是整个电网运行的重要组成部分,也是电子元器件和电子设备的工作空间,如何对电力系统的稳定性进行评估是保证其稳定运行的关键。针对... 随着计算机技术的发展,诸多领域开始向智能化方向转型,空间数据智能技术的应用日益受到关注。电力系统是整个电网运行的重要组成部分,也是电子元器件和电子设备的工作空间,如何对电力系统的稳定性进行评估是保证其稳定运行的关键。针对电力系统的暂态评估问题,融合空间数据智能技术,对样本数据进行数据采集和特征提取模型的构建。利用支持向量机(Support Vector Machine, SVM)算法提高电力系统性能,引入核函数和马氏距离对SVM算法进行优化,建立了基于核SVM(Kernel SVM,KSVM)的电力系统暂态评估模型。在电力系统数据集上进行实验,结果表明所提模型KSVM精确率为95.62%,比卷积神经网络算法高11.36%。 展开更多
关键词 电力系统 暂态 支持向量 函数 马氏距离
在线阅读 下载PDF
基于类间距的径向基函数-支持向量机核参数评价方法分析 被引量:16
5
作者 宋小杉 蒋晓瑜 +1 位作者 罗建华 姚军 《兵工学报》 EI CAS CSCD 北大核心 2012年第2期203-208,共6页
分析了径向基函数(RBF)核参数γ对空间映射结果的影响,得出3条结论。在此基础上,找到了1种新的核参数评价方法,该方法通过计算特征空间中两类之间的平均距离(ICMD)来评价γ的优劣。文章分别从理论和实验两方面证明了ICMD最大值的存在性... 分析了径向基函数(RBF)核参数γ对空间映射结果的影响,得出3条结论。在此基础上,找到了1种新的核参数评价方法,该方法通过计算特征空间中两类之间的平均距离(ICMD)来评价γ的优劣。文章分别从理论和实验两方面证明了ICMD最大值的存在性。为验证该方法的有效性,文中对7个样本集进行了两组参数选择实验:第一组实验通过ICMD找到最优核参数γ,再由10-折交叉验证得到最优惩罚因子C,称为"两步法";第二组实验采用基于10-折交叉验证的网格搜索法进行参数选择。结果显示两种方法均选择出了适当的参数,但前者花费的时间比后者大大缩短,验证了ICMD方法的有效性。 展开更多
关键词 人工智能 支持向量 高斯 参数评价 参数选择
在线阅读 下载PDF
基于核主元分析和最小二乘支持向量机的中速磨煤机故障诊断 被引量:25
6
作者 刘定平 叶向荣 +1 位作者 陈斌源 汤美玉 《动力工程》 CAS CSCD 北大核心 2009年第2期155-158,共4页
为了对火电厂磨煤机作出早期故障预测并有效判别其故障类型,提出了基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的磨煤机故障诊断新方法,并采用该方法对某电厂的HP碗式中速磨煤机的故障特征数据进行了仿真试验.结果表明:该方法可... 为了对火电厂磨煤机作出早期故障预测并有效判别其故障类型,提出了基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的磨煤机故障诊断新方法,并采用该方法对某电厂的HP碗式中速磨煤机的故障特征数据进行了仿真试验.结果表明:该方法可提取变量的特征信息,以有效地捕捉变量间的非线性关系,从而能有效地处理故障征兆与故障类型之间的不确定性,具有很好的分辨力,而且故障诊断的正确率很高. 展开更多
关键词 中速磨煤 故障诊断 最小二乘支持向量 主元分析
在线阅读 下载PDF
基于核函数支持向量机的雷达辐射源识别 被引量:18
7
作者 关欣 郭强 +2 位作者 张政超 赵静 翟鸿君 《弹箭与制导学报》 CSCD 北大核心 2011年第4期188-191,共4页
文中针对雷达辐射源信号环境复杂导致的正确识别率较低的问题,提出了基于支持向量机理论的雷达辐射源识别方法,并构建了基于多种核函数支持向量机的雷达辐射源分类器。通过在不同噪声环境下进行仿真实验,证明了支持向量机理论在雷达辐... 文中针对雷达辐射源信号环境复杂导致的正确识别率较低的问题,提出了基于支持向量机理论的雷达辐射源识别方法,并构建了基于多种核函数支持向量机的雷达辐射源分类器。通过在不同噪声环境下进行仿真实验,证明了支持向量机理论在雷达辐射源识别中的有效性,并比较了多种核函数支持向量机的识别效果。 展开更多
关键词 雷达辐射源识别 函数 支持向量
在线阅读 下载PDF
基于核主成分分析及支持向量机的水轮机叶片裂纹源定位 被引量:11
8
作者 王向红 朱昌明 +1 位作者 毛汉领 黄振峰 《振动与冲击》 EI CSCD 北大核心 2010年第11期226-229,共4页
结合核主成分分析(KPCA)以及支持向量机对水轮机转轮叶片裂纹源的声发射信号进行定位。结果表明,利用核主成分分析提取的特征参数进行定位的精度高于原始参数的定位精度,即输入9个特征参数时,支持向量机在叶片区域的识别率为100%,在裂... 结合核主成分分析(KPCA)以及支持向量机对水轮机转轮叶片裂纹源的声发射信号进行定位。结果表明,利用核主成分分析提取的特征参数进行定位的精度高于原始参数的定位精度,即输入9个特征参数时,支持向量机在叶片区域的识别率为100%,在裂纹源对焊缝距离的支持向量回归分析中的最大误差为20cm。因而结合KPCA和支持向量机对复杂的大尺寸结构进行定位是一种较好的方法,既减少了输入信号的维数,又提高了定位精度。 展开更多
关键词 支持向量 主成分分析 源定位 声发射
在线阅读 下载PDF
基于核主元分析与支持向量机的监控诊断方法及其应用 被引量:14
9
作者 蒋少华 桂卫华 +1 位作者 阳春华 唐朝晖 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期1323-1328,共6页
为了及时反映密闭鼓风炉冶炼过程状态,实现对密闭鼓风炉炉况的监控与诊断,提出核主元分析和多支持向量机分类的相结合的过程监控与故障诊断方法。其原理是:首先,用核主元分析方法提取过程数据特征,建立核主元分析的监控模型;然后,将代... 为了及时反映密闭鼓风炉冶炼过程状态,实现对密闭鼓风炉炉况的监控与诊断,提出核主元分析和多支持向量机分类的相结合的过程监控与故障诊断方法。其原理是:首先,用核主元分析方法提取过程数据特征,建立核主元分析的监控模型;然后,将代表过程特征的核主元送入多支持向量机分类器中,利用"一对其余"算法对故障进行诊断与分类。实验结果表明,所提出的方法与传统的主元分析方法相比,整个样本集的可分性变大,分类正确率提高,能更准确地诊断炉子的各种故障,可有效地用于密闭鼓风炉冶炼过程的故障诊断。 展开更多
关键词 主元分析 支持向量 多类分类器 过程监控 故障诊断
在线阅读 下载PDF
组合核支持向量机高光谱图像分类 被引量:6
10
作者 厉小润 朱洁尔 +1 位作者 王晶 赵辽英 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第8期1403-1410,共8页
为了提高高光谱遥感图像分类中空间信息的利用率,提出一种将空间邻域信息和光谱信息结合的组合核支持向量机(SVM)学习算法.用SVM进行预分类,从分类结果图提取各像素的空间邻域特征,与光谱特征结合构造组合核SVM进行分类,并再次提取空间... 为了提高高光谱遥感图像分类中空间信息的利用率,提出一种将空间邻域信息和光谱信息结合的组合核支持向量机(SVM)学习算法.用SVM进行预分类,从分类结果图提取各像素的空间邻域特征,与光谱特征结合构造组合核SVM进行分类,并再次提取空间邻域特征进行多次空-谱信息组合核SVM迭代分类,如此迭代10次,从中选择合适的结果作为最终输出.结果表明,该方法对传统支持向量机的分类精度提升幅度可达10%左右.同时,与其他组合核支持向量机相比,该算法用更少的训练样本获得了更高分类精度. 展开更多
关键词 高光谱图像分类 支持向量 空间邻域 组合
在线阅读 下载PDF
基于小波去噪核主元分析和邻近支持向量机的性能监控和故障诊断 被引量:9
11
作者 张曦 阎威武 +1 位作者 赵旭 邵惠鹤 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第2期181-185,共5页
针对化工过程数据中包含噪声和强非线性的特点,提出了基于小波去噪核主元分析(De-noised Kernel Principal Component Analysis,DKPCA)和邻近支持向量机(Proximal Support Vector Machine,PSVM)的性能监控和故障诊断新方法.将样本数据... 针对化工过程数据中包含噪声和强非线性的特点,提出了基于小波去噪核主元分析(De-noised Kernel Principal Component Analysis,DKPCA)和邻近支持向量机(Proximal Support Vector Machine,PSVM)的性能监控和故障诊断新方法.将样本数据用小波方法进行去噪处理,去除数据所包含的噪声,通过KPCA将降噪后的数据进行变换,在特征空间里构建T2和Q统计量来监测是否有故障发生;若发生故障,则计算数据的非线性主元得分向量,并将其作为PSVM的输入值,通过PSVM分类来确定故障的具体类型.流化催化裂化装置(FCCU)仿真试验验证了小波去噪的必要性和利用DKPCA-PSVM进行监控和故障诊断的有效性. 展开更多
关键词 小波去噪 性能监控 故障诊断 小波变换 主元分析 邻近支持向量
在线阅读 下载PDF
基于舍一交叉验证优化最小二乘支持向量机的故障诊断模型 被引量:17
12
作者 李锋 汤宝平 章国稳 《振动与冲击》 EI CSCD 北大核心 2010年第9期170-174,共5页
提出一种基于舍一交叉验证优化最小二乘支持向量机(LS-SVM)的旋转机械故障诊断模型。首先将故障信号EMD分解为平稳IMF分量,再选择表征故障调制特征的IMF分量并构造瞬时幅值欧式范数作为故障特征矢量输入到舍一交叉验证(leave-one-outcro... 提出一种基于舍一交叉验证优化最小二乘支持向量机(LS-SVM)的旋转机械故障诊断模型。首先将故障信号EMD分解为平稳IMF分量,再选择表征故障调制特征的IMF分量并构造瞬时幅值欧式范数作为故障特征矢量输入到舍一交叉验证(leave-one-outcross-validation,LOO-CV)优化线性核LS-SVM中进行故障识别。EMD分解可自适应分离故障调制信号;瞬时幅值欧式范数矢量的不同表征各类故障的差异;舍一交叉验证优化惩罚因子可以使线性核LS-SVM克服对故障类型与模式编号映射关系先验知识的依赖,提高LS-SVM的故障预测精度和自适应诊断能力。一个深沟球轴承故障诊断实例说明该模型的有效性。 展开更多
关键词 瞬时幅值欧式范数 最小二乘支持向量 舍一交叉验证 参数优化 故障诊断
在线阅读 下载PDF
一种混合核函数支持向量机算法 被引量:21
13
作者 颜根廷 马广富 肖余之 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第11期1704-1706,共3页
提出一种基于混合核函数的支持向量机算法.首先证明了常用核函数的非负线性组合也是满足Mercer条件的核函数.然后通过最小化衡量二次损失函数支持向量机泛化能力的RM界来进行各子核函数参数、混合核函数组合系数以及惩罚系数的选取.仿... 提出一种基于混合核函数的支持向量机算法.首先证明了常用核函数的非负线性组合也是满足Mercer条件的核函数.然后通过最小化衡量二次损失函数支持向量机泛化能力的RM界来进行各子核函数参数、混合核函数组合系数以及惩罚系数的选取.仿真实验表明,基于混合核函数的支持向量机的泛化性能优于基于单一核函数的支持向量机. 展开更多
关键词 支持向量 Mercer条件 混合函数 RM界
在线阅读 下载PDF
一种多核加权支持向量机的水质预测方法 被引量:7
14
作者 梁雪春 龚艳冰 肖迪 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第B09期14-17,共4页
提出一种基于多核加权支持向量机的水质预测方法.核函数及其参数选择与数据分布的情况密切相关,采用单一的核函数应对水资源质量评价指标的整个数据分布难以达到很好的预测结果.采用多核加权学习的核函数避免了核函数设计的盲目性和局... 提出一种基于多核加权支持向量机的水质预测方法.核函数及其参数选择与数据分布的情况密切相关,采用单一的核函数应对水资源质量评价指标的整个数据分布难以达到很好的预测结果.采用多核加权学习的核函数避免了核函数设计的盲目性和局部最优等非线性优化问题.实例表明,该方法的预测结果是合理可行的,且与以往同类预测方法相比,有着更为客观,计算简便等优点. 展开更多
关键词 学习 支持向量 水质预测
在线阅读 下载PDF
组合核函数支持向量机在水中目标识别中的应用 被引量:9
15
作者 陆阳 王海燕 田娜 《声学技术》 EI CSCD 北大核心 2005年第3期144-147,共4页
论文研究了支持向量机核函数构成条件以及不同核函数的特性,结合水中目标识别技术特点,提出了一种组合核函数支持向量机的方法。提取了基于小波变换的舰船辐射噪声奇异性、尺度-过零、尺度-能量特征,对水中目标进行了SVM分类识别。研究... 论文研究了支持向量机核函数构成条件以及不同核函数的特性,结合水中目标识别技术特点,提出了一种组合核函数支持向量机的方法。提取了基于小波变换的舰船辐射噪声奇异性、尺度-过零、尺度-能量特征,对水中目标进行了SVM分类识别。研究表明,基于组合核函数的支持向量机分类识别效果优于单独核函数的支持向量机识别效果。 展开更多
关键词 支持向量 函数 目标识别
在线阅读 下载PDF
基于模糊核聚类和支持向量机的鲁棒协同推荐算法 被引量:7
16
作者 伊华伟 张付志 巢进波 《电子与信息学报》 EI CSCD 北大核心 2017年第8期1942-1949,共8页
该文针对现有推荐算法在面对托攻击时鲁棒性不高的问题,提出一种基于模糊核聚类和支持向量机的鲁棒推荐算法。首先,根据攻击概貌间高度相关的特性,利用模糊核聚类方法在高维特征空间对用户概貌进行聚类,实现攻击概貌的第1阶段检测。然后... 该文针对现有推荐算法在面对托攻击时鲁棒性不高的问题,提出一种基于模糊核聚类和支持向量机的鲁棒推荐算法。首先,根据攻击概貌间高度相关的特性,利用模糊核聚类方法在高维特征空间对用户概貌进行聚类,实现攻击概貌的第1阶段检测。然后,利用支持向量机分类器对含有攻击概貌的聚类进行分类,实现攻击概貌的第2阶段检测。最后,基于攻击概貌检测结果,通过构造指示函数排除攻击概貌在推荐过程中产生的影响,并引入矩阵分解技术设计相应的鲁棒协同推荐算法。实验结果表明,与现有的基于矩阵分解模型的推荐算法相比,所提算法不但具有很好的鲁棒性,而且准确性也有提高。 展开更多
关键词 鲁棒推荐算法 托攻击 矩阵分解 模糊聚类 支持向量
在线阅读 下载PDF
再生核支持向量机在非线性系统中的应用 被引量:3
17
作者 胡丹 肖建 车畅 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第1期124-127,共4页
为了提高非线性系统辨识的精度,提出用Walsh函数作为空间V0的尺度函数,构造出L2(R)空间的正交规范序列。结合小波多分辨分析,将Hilbert空间分为一系列子空间,并由可分Hilbert空间与L2(R)的等价性,利用内积同构的线性算子,可以把V0子空... 为了提高非线性系统辨识的精度,提出用Walsh函数作为空间V0的尺度函数,构造出L2(R)空间的正交规范序列。结合小波多分辨分析,将Hilbert空间分为一系列子空间,并由可分Hilbert空间与L2(R)的等价性,利用内积同构的线性算子,可以把V0子空间的尺度函数折算为Hilbert空间的子空间V0的尺度函数,构造出新的Walsh序列再生核。通过仿真实验,与传统的RBF核函数、高斯核函数等比较,该尺度再生核函数具有更高的辨识精度,较少支持向量数目,充分体现了支持向量机较好的推广性能。 展开更多
关键词 HILBERT空间 回归 再生 尺度 支持向量
在线阅读 下载PDF
凸组合核函数的支持向量机高光谱图像分类 被引量:5
18
作者 胡燕燕 李东生 张诗桂 《激光与红外》 CAS CSCD 北大核心 2016年第5期627-633,共7页
支持向量机的高光谱图像分类中,单核函数存在局限性。为了提高分类器的分类精度和支持向量机模型的泛化能力,利用高斯径向基核和多层感知核进行凸组合构造复合核函数支持向量机,证明了该函数满足作为核函数的判决Mercer条件,并进一步将... 支持向量机的高光谱图像分类中,单核函数存在局限性。为了提高分类器的分类精度和支持向量机模型的泛化能力,利用高斯径向基核和多层感知核进行凸组合构造复合核函数支持向量机,证明了该函数满足作为核函数的判决Mercer条件,并进一步将凸组合核函数支持向量机应用到高光谱图像分类中,完成了建模和实验验证。实验结果表明,凸组合核函数具有较好的鲁棒性,且该类支持向量机的分类精度和KAPPA系数较单核SVM均得到了有效的提高,是一种解决多分类问题行之有效的分类器。 展开更多
关键词 高光谱图像 支持向量 函数 凸组合
在线阅读 下载PDF
基于支持向量机的复杂核素能谱识别 被引量:3
19
作者 张江梅 任俊松 +3 位作者 李培培 王坤朋 霍建文 朱庆平 《核电子学与探测技术》 CAS 北大核心 2016年第8期856-861,共6页
针对传统γ能谱识别方法对高本底、低分辨率的复杂γ谱解析效果不明显、准确率低等问题,提出了一种基于支持向量机的核素识别方法。通过能谱预处理方法,获取能谱特征信息,将核素库的建立与分类器的构造相结合,使用实际能谱进行验证。通... 针对传统γ能谱识别方法对高本底、低分辨率的复杂γ谱解析效果不明显、准确率低等问题,提出了一种基于支持向量机的核素识别方法。通过能谱预处理方法,获取能谱特征信息,将核素库的建立与分类器的构造相结合,使用实际能谱进行验证。通过谱仪对3种核素的不同组合进行能谱实测,实验结果表明,通过支持向量机的分类方法,对实测混合核素的识别准确率达到94%以上。 展开更多
关键词 支持向量 Γ能谱 素识别 混合
在线阅读 下载PDF
混合核函数对支持向量机分类性能的改进 被引量:3
20
作者 朱树先 张仁杰 郑刚 《上海理工大学学报》 CAS 北大核心 2009年第2期173-176,共4页
通过对核矩阵的计算和研究,从理论上对常用的核函数进行了评估.在此基础上,通过实验仿真证实了通过优选后的核函数所组成的混合核函数对支持向量机分类性能的改善,为核函数的选择提供了参考.
关键词 支持向量 函数 模型选择 矩阵 混合函数
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部