期刊文献+
共找到346篇文章
< 1 2 18 >
每页显示 20 50 100
基于孪生网络和交叉注意力机制的空域和JPEG图像隐写分析
1
作者 张倩倩 李浩 +2 位作者 张祎 马媛媛 罗向阳 《计算机学报》 北大核心 2025年第6期1305-1326,共22页
近年来,深度学习在图像隐写分析任务中表现出了优越的性能。然而,此类方法在捕获图像中微弱的隐写噪声时,往往会因下采样过程中大量关键细节信息的丢失,导致在检测空域和JPEG隐写图像时难以同时实现高检测准确率。为此,本文基于孪生神... 近年来,深度学习在图像隐写分析任务中表现出了优越的性能。然而,此类方法在捕获图像中微弱的隐写噪声时,往往会因下采样过程中大量关键细节信息的丢失,导致在检测空域和JPEG隐写图像时难以同时实现高检测准确率。为此,本文基于孪生神经网络对图像进行分区域细粒度学习,同时利用交叉注意力机制进一步增强模型全局信息感知能力,提出一种跨通道交叉注意力增强的隐写分析方法(CES-Net)。首先,采用孪生神经网络作为主干网对图像进行分区域学习,以细致地感知空域和JPEG图像的像素信息和微弱的隐写噪声,同时,设计了多样化的高通滤波器和多层卷积作为网络预处理层来获取丰富且高质量的隐写噪声残差;接着,改进了特征提取部分,提出了跨通道交叉注意力网络,使模型提取到更多因隐写嵌入对图像像素相关性造成扰动的隐写特征,用于基于秘密噪声残差等弱信息的隐写图像分类任务;最后,融合子网络学习到的不同区域图像的分类特征,并输入全连接层组成的分类模块对载体和载密图像进行分类,提升检测效果。在隐写和隐写分析领域常用的图像数据集BOSSBase-1.01和BOWs2上进行了大量实验,结果表明,CES-Net方法与现有方法相比,对于空域和JPEG图像的多种主流隐写算法均能达到目前最优的检测准确率,其中,对多种空域隐写算法(WOW、S-UNIWARD和HILL)在不同嵌入比率下生成的载密图像,检测准确率最高分别提升1.27%~25.61%、2.1%~21.73%和1.69%~23.46%;对JPEG图像自适应隐写算法J-UNIWARD在不同嵌入比率下生成的载密图像,CES-Net方法对两种质量因子(QF=75和QF=85)的JPEG图像隐写检测准确率最高分别提升2.34%和2.06%。 展开更多
关键词 隐写分析 隐写 孪生网络 交叉注意力机制 信息隐藏
在线阅读 下载PDF
基于特征交叉注意力机制融合的轴承故障诊断方法
2
作者 赵国超 刘崇德 +2 位作者 宋宇宁 金鑫 李伟华 《振动与冲击》 北大核心 2025年第12期228-237,共10页
为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convo... 为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convolutional neural network,CNN)和双向时间卷积网络(bidirectional temporal convolutional network,BiTCN)提取时频特征,通过交叉注意力机制(cross-attention mechanism,CA)融合时频特征的能力,充分提取原始信号故障特征,利用全连接层实现滚动轴承故障类型的精确诊断。试验研究表明:在含信噪比为9.32 dB、标准差为2.98的高斯白噪声的环境下,使用CNN-BiTCN-CA模型轴承故障分类准确率为99.88%,相较于使用CNN、BiTCN和结合自注意力机制的卷积神经网络(CNN with self-attention mechanism,CNN-SA)诊断轴承故障,准确率分别提升约22.79%、4.85%和4.19%;在引入信噪比为3.31 dB、标准差为5.96的高斯白噪声时,该模型仍然可以达到96.12%的诊断准确率。CNN-BiTCN-CA模型能够深入提取轴承信号中的故障特征,有效提高故障分类准确性。 展开更多
关键词 滚动轴承 故障诊断 双向时间卷积网络(BiTCN) 时频融合 交叉注意力机制(CA)
在线阅读 下载PDF
基于改进时域卷积网络与多头自注意力机制的间歇过程质量预测模型
3
作者 赵小强 柳勇勇 +1 位作者 惠永永 刘凯 《计算机应用》 北大核心 2025年第7期2245-2252,共8页
为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自... 为提高时域卷积网络(TCN)在批量大小变化时的训练稳定性,并解决间歇过程质量预测在捕捉长期依赖性和全局关联性上存在不足而导致的预测准确度不高的问题,提出一种基于批量组规范化(BGN)和Mish激活函数改进残差结构的TCN(BMTCN)与多头自注意力机制(MHSA)的间歇过程质量预测模型(BMTCN-MHSA)。首先,将间歇过程的三维数据展开为二维矩阵形式,并对数据进行归一化处理,再引入奇异谱分析法(SSA)分解重构数据;其次,在时域卷积的残差部分融入BGN以降低网络模型在批量大小变化时的敏感度,引入Mish激活函数以提高模型的泛化能力,并利用多头自注意力机制对序列中不同位置的特征信息进行关联和权重分配,从而进一步提取序列中的关键特征信息和相互依赖关系,进而更好地捕捉间歇过程的动态特征;最后,使用青霉素仿真实验数据进行实验验证。实验结果表明,相较于TCN模型,BMTCN-MHSA模型的平均绝对误差(MAE)降低了56.86%,均方误差(MSE)降低了48.80%,而决定系数(R2)达到了99.48%,这表明BMTCN-MHSA模型提高了间歇过程质量预测的准确性。 展开更多
关键词 间歇过程 质量预测 奇异谱分析法 时域卷积网络 多头自注意力机制
在线阅读 下载PDF
基于交叉多头注意力的查询式文本摘要生成
4
作者 何东欢 李旸 王素格 《中文信息学报》 北大核心 2025年第7期138-147,共10页
生成是一项根据给定文档和查询,生成与查询相关摘要的任务。该文将查询式摘要生成任务转换为阅读理解任务,将文档与查询进行交互,建立了基于交叉多头注意力的Transformer架构的多源指针生成式摘要新模型。该模型通过BERT预训练模型,建... 生成是一项根据给定文档和查询,生成与查询相关摘要的任务。该文将查询式摘要生成任务转换为阅读理解任务,将文档与查询进行交互,建立了基于交叉多头注意力的Transformer架构的多源指针生成式摘要新模型。该模型通过BERT预训练模型,建立文档、查询和摘要的嵌入表示,再在Transformer架构中,通过交叉的多头注意力机制,建立查询与文档的交互深层语义表示。在此基础上,使用多源指针生成网络,使生成的摘要与文档和查询内容具有语义一致性和表达连贯性。最后,在查询式文本摘要生成数据集Debatepedia和Querysum-data上,与已有方法进行对比实验,实验结果验证了该文摘要生成模型CMAT-PG的有效性。 展开更多
关键词 查询式文本摘要生成 机器阅读理解 交叉多头注意力机制 多源指针生成网络
在线阅读 下载PDF
基于多头自注意力机制与MLP-Interactor的多模态情感分析
5
作者 林宜山 左景 卢树华 《浙江大学学报(工学版)》 北大核心 2025年第8期1653-1661,1679,共10页
针对多模态情感分析中单模态特征质量较差及多模态特征交互不够充分的问题,提出基于多头自注意力机制和MLP-Interactor的多模态情感分析方法.通过基于多头自注意力机制的模态内特征交互模块,实现单模态内的特征交互,提高单模态特征的质... 针对多模态情感分析中单模态特征质量较差及多模态特征交互不够充分的问题,提出基于多头自注意力机制和MLP-Interactor的多模态情感分析方法.通过基于多头自注意力机制的模态内特征交互模块,实现单模态内的特征交互,提高单模态特征的质量.通过MLP-Interactor机制实现多模态特征之间的充分交互,学习不同模态之间的一致性信息.利用提出方法,在CMU-MOSI和CMU-MOSEI 2个公开数据集上进行大量的实验验证与测试.结果表明,提出方法超越了当前诸多的先进方法,可以有效地提升多模态情感分析的准确性. 展开更多
关键词 多模态情感分析 MLP-Interactor 多头自注意力机制 特征交互
在线阅读 下载PDF
基于改进双重压缩和激励与多头特征注意力机制的电-热负荷协同预测
6
作者 余强 韩静娴 +4 位作者 杨子梁 宋济东 杨德昌 齐海杰 于芃 《电力自动化设备》 北大核心 2025年第3期201-208,共8页
综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注... 综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注意力对卷积结果进行赋权,并利用输入门控循环单元模型对负荷进行预测。算例仿真结果表明,所提模型的平均绝对百分比误差均低于3%。 展开更多
关键词 综合能源系统 负荷预测 分组卷积神经网络 门控循环单元 改进的压缩和激励注意力机制 多头特征注意力机制
在线阅读 下载PDF
融合多头自注意力机制的故障命名实体识别
7
作者 王江 剡昌锋 +2 位作者 卢家伟 王瑞民 张永明 《兰州理工大学学报》 北大核心 2025年第4期33-42,共10页
在汽轮发电机组故障诊断知识图谱构建过程中,缺乏公开的命名实体标注语料数据集,案例集中的数据呈现多源异构,专业词汇的关联权重特征提取困难.对此,根据汽轮发电机组故障案例公开资料,构建了汽轮发电机组故障诊断命名实体识别标注语料... 在汽轮发电机组故障诊断知识图谱构建过程中,缺乏公开的命名实体标注语料数据集,案例集中的数据呈现多源异构,专业词汇的关联权重特征提取困难.对此,根据汽轮发电机组故障案例公开资料,构建了汽轮发电机组故障诊断命名实体识别标注语料数据集,提出了融合多头自注意力机制与BERT-BiLSTM-CRF融合的命名实体识别方法.结果表明,该方法能够有效识别专业领域故障实体类别,明显优于其他传统命名实体识别方法,可为汽轮发电机组故障诊断知识图谱和智能辅助决策系统的构建提供保障. 展开更多
关键词 汽轮发电机组 故障诊断 命名实体识别 多头自注意力机制 知识图谱
在线阅读 下载PDF
基于多头集中注意力机制的无监督视频摘要模型
8
作者 李玉洁 贾皓楠 +4 位作者 零俐 周文凯 蒋政 丁数学 谭本英 《济南大学学报(自然科学版)》 北大核心 2025年第4期558-568,共11页
针对现有视频摘要方法在建立长距离帧依赖性和并行化训练方面的局限性问题,提出一种基于多头集中注意力机制的无监督视频摘要模型(MH-CASUM)。将多头注意力机制融入集中注意力模型,改进长度正则化损失函数,优化损失阈值以选择模型参数,... 针对现有视频摘要方法在建立长距离帧依赖性和并行化训练方面的局限性问题,提出一种基于多头集中注意力机制的无监督视频摘要模型(MH-CASUM)。将多头注意力机制融入集中注意力模型,改进长度正则化损失函数,优化损失阈值以选择模型参数,并结合视频帧的唯一性与多样性来丰富摘要信息,从而更高效地完成视频摘要任务。通过在SumMe和TVSum数据集上进行的F_(1)值、Kendall相关系数和Spearman相关系数的评估实验,验证MH-CASUM模型的性能。结果表明:引入的多头注意力机制及在模型参数选择上损失阈值的改进方法使得MH-CASUM模型的视频摘要性能显著提升;与之前表现最佳的无监督视频摘要模型CASUM相比,MH-CASUM在TVSum数据集中的F_(1)值提升0.98%,证明了其在视频摘要任务中的优越性和竞争力。 展开更多
关键词 视频摘要 注意力机制 多头集中注意力 无监督方法
在线阅读 下载PDF
基于多头注意力机制和TCN-BiLSTM的IGBT剩余寿命预测方法
9
作者 田源 高树国 +2 位作者 邢超 朱瑞敏 姜士哲 《电气工程学报》 北大核心 2025年第3期69-77,共9页
针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memor... 针对电力电子设备精准运维和半导体功率器件的态势感知需求,提出一种基于多头注意力机制(Multi-head attention mechanism,MA)和时域卷积网络(Temporal convolutional network,TCN)-双向长短时记忆(Bidirectional long short-term memory,BiLSTM)网络融合的IGBT剩余寿命预测方法。首先,基于IGBT封装模块老化机理的深入分析,设计并搭建加速老化试验平台,通过控制功率循环过程中的结温波动,施加电流加速IGBT模块的老化进程,采用高精度数据采集系统获取特征参量集-射极饱和压降Vce(sat)老化数据。其次,以TCN模型为基础,引入MA和BiLSTM神经网络构建预测模型,对IGBT劣化特征序列进行预测验证。结果表明,在相同条件下,所提模型相对于传统时序预测模型,在不显著增加模型复杂度和计算负担的情况下,具有更高的精度,充分验证了该模型在工程实践中应用于IGBT剩余寿命在线预测的可行性与高效性。 展开更多
关键词 IGBT 时域卷积网络 双向长短时记忆网络 多头注意力机制 老化预测
在线阅读 下载PDF
基于注意力机制的木材交叉场纹孔特征识别方法
10
作者 王新洲 李俊源 +4 位作者 王清波 席靖宇 王宇轩 衡利辰 潘彪 《林业工程学报》 北大核心 2025年第4期87-94,共8页
交叉场纹孔作为木材显微构造中的一个重要特征,在木材构造研究和树种识别中具有重要作用。以针叶材为研究对象,基于计算机视觉技术对交叉场纹孔特征快速提取方法展开研究,从而实现在向系统传入木材径切面切片图像后,即可快速得到交叉场... 交叉场纹孔作为木材显微构造中的一个重要特征,在木材构造研究和树种识别中具有重要作用。以针叶材为研究对象,基于计算机视觉技术对交叉场纹孔特征快速提取方法展开研究,从而实现在向系统传入木材径切面切片图像后,即可快速得到交叉场纹孔识别结果。首先采集48种针叶材树种的径切面图像构建数据集,通过训练并比较YOLOv4、YOLOv4-Tiny,以及主干特征提取网络更换为ResNet50和MobileNetv3的YOLOv4-Tiny模型后,选用表现较优的YOLOv4-Tiny,并将其结合SENet、ECANet、CBAM 3种注意力机制进行比较分析。研究结果表明:ECANet表现最好,对于窗格状、云杉型、柏木型、杉木型、松木型5种交叉场纹孔类型的识别准确率分别为98.2%,85.0%,88.4%,92.9%,80.0%。通过Grad-CAM可视化分析,发现模型对于窗格状和杉木型的预测框定位最为准确,而对于柏木型的预测置信度相对较低,在射线薄壁细胞与轴向管饱相交边界不明显的情况下,模型的预测效果较差。综上所述,使用YOLOv4-Tiny模型结合注意力机制进行交叉场纹孔的识别是可行的,未来的工作可以集中于对深度学习神经网络结构的进一步优化,以提高模型在复杂情况下的识别准确率。 展开更多
关键词 木材微观构造 交叉场纹孔 深度学习 目标检测 注意力机制
在线阅读 下载PDF
基于边缘增强的交叉注意力医学影像分割方法
11
作者 陆秋 张云磊 +1 位作者 邵铧泽 黄琳 《桂林理工大学学报》 北大核心 2025年第1期111-119,共9页
为了在复杂的腹部多器官MRI和CT医学影像中解决目标区域与背景的边缘误分割问题,提出一种以ResUNet网络为基架,包含二维分轴的交叉注意力机制和两阶段边缘增强模块的网络模型(REAUp-L)。第1阶段的边缘信息增强模块用于下采样阶段,以更... 为了在复杂的腹部多器官MRI和CT医学影像中解决目标区域与背景的边缘误分割问题,提出一种以ResUNet网络为基架,包含二维分轴的交叉注意力机制和两阶段边缘增强模块的网络模型(REAUp-L)。第1阶段的边缘信息增强模块用于下采样阶段,以更好地提取边缘信息;第2阶段的不确定性概率边缘区域增强模块用于上采样阶段,以更好地保留边缘信息和降低噪声造成的误差;跳跃连接阶段使用一种二维分轴交叉注意力机制,以更好地捕获全局依赖关系。在腹部多器官数据集上进行的实验结果表明:该网络模型较基于UNet改进的3种主流网络模型在Dice和IoU评价指标中都有了一定的提升;边缘增强能有效提取医学影像的边缘信息,得到更加清晰的边缘曲线,有利于进一步提升分割性能。 展开更多
关键词 医学影像分割 交叉注意力机制 不确定性 像素点概率机制
在线阅读 下载PDF
基于ConvNeXt和可变形交叉注意力的多模态3D目标检测方法
12
作者 周鹏 宋志强 +2 位作者 胡凯 宋利鹏 李明阳 《电子测量技术》 北大核心 2025年第12期63-70,共8页
近年来,随着新能源汽车的快速发展,3D目标检测作为自动驾驶技术的核心基础正变得愈发重要。融合雷达点云与图像等多模态信息的策略,能够显著提升目标检测的准确性与鲁棒性。受BEVDet启发,本研究提出了一种基于BEV(鸟瞰图)视角的改进多... 近年来,随着新能源汽车的快速发展,3D目标检测作为自动驾驶技术的核心基础正变得愈发重要。融合雷达点云与图像等多模态信息的策略,能够显著提升目标检测的准确性与鲁棒性。受BEVDet启发,本研究提出了一种基于BEV(鸟瞰图)视角的改进多模态融合3D目标检测方法。该方法采用ConvNeXt网络结合FPN-DCN结构高效提取图像特征,并通过可变形交叉注意力机制实现图像与点云数据的深度融合,从而进一步提升模型的检测精度。在nuScenes自动驾驶数据集上的实验表明,本研究模型性能优异,在测试集上的NDS达到了64.9%,显著超越了大多数现有检测方法。 展开更多
关键词 自动驾驶 3D目标检测 多模态融合 可变形交叉注意力机制
在线阅读 下载PDF
结合小波变换与注意力机制的轴承故障诊断
13
作者 赵玲 孟阳 +2 位作者 蒋振霖 吕颖 王航 《振动.测试与诊断》 北大核心 2025年第3期430-437,616,共9页
针对传统一维轴承振动信号特征表达效果较弱、轴承故障数据时频特征提取困难及其诊断精度较低等问题,提出一种基于小波变换与注意力机制网络(wavelet transform and attention mechanism net,简称WTA-Net)的轻量化轴承故障诊断方法。首... 针对传统一维轴承振动信号特征表达效果较弱、轴承故障数据时频特征提取困难及其诊断精度较低等问题,提出一种基于小波变换与注意力机制网络(wavelet transform and attention mechanism net,简称WTA-Net)的轻量化轴承故障诊断方法。首先,通过小波变换将滚动轴承的一维振动时序信号转化为二维时频图;其次,针对网络训练时梯度消失的问题,提出改进的轻量化骨干网络R-ResNet18提取二维时频图特征;然后,在网络不同尺度的特征层嵌入时空注意力机制(convolutional block attention module,简称CBAM),使网络更加关注二维时频图的关键信息特征;最后,采用标签平滑的交叉熵损失函数来对网络模型进行训练。实验结果表明,所提出方法能够精准地辨识不同故障类型和故障严重程度,在凯斯西储大学轴承数据集10个分类任务中可达到99.9%的分类精度,模型应用在辛辛那提大学智能维护系统(intelligent maintenance systems,简称IMS)轴承数据集上的分类精度达到了99.9%,提取的特征信息区分度高,具有良好的泛化性和鲁棒性。 展开更多
关键词 小波变换 交叉熵损失 注意力机制 故障诊断 振动信号
在线阅读 下载PDF
融合Bi-LSTM与多头注意力的分层强化学习推理方法 被引量:3
14
作者 李卫军 刘世侠 +3 位作者 刘雪洋 丁建平 苏易礌 王子怡 《计算机应用研究》 北大核心 2025年第1期71-77,共7页
知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注。针对知识推理可解释性差、不能利用隐藏语义信息和奖励稀疏的问题提出了一种融合Bi-LSTM与多头注意力机制的分层强化学习方法。将知识图谱通过谱聚类分簇,使智能体分... 知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注。针对知识推理可解释性差、不能利用隐藏语义信息和奖励稀疏的问题提出了一种融合Bi-LSTM与多头注意力机制的分层强化学习方法。将知识图谱通过谱聚类分簇,使智能体分别在簇与实体间进行推理,利用Bi-LSTM与多头注意力机制融合模块对智能体的历史信息进行处理,可以更有效地发现和利用知识图谱隐藏的语义信息。Hight智能体通过分层策略网络选择目标实体所在的簇,指导Low智能体进行实体间的推理。利用强化学习智能体可以有效地解决可解释性差的问题,并通过相互奖励机制对两个智能体的动作选择以及搜索路径给予奖励,以解决智能体奖励稀疏的问题。在FB15K-237、WN18RR、NELL-995三个公开数据集上的实验结果表明,提出的方法能够捕捉序列数据中的长期依赖关系对长路径进行推理,并且在推理任务中的性能优于同类方法。 展开更多
关键词 知识推理 分层强化学习 Bi-LSTM 多头注意力机制
在线阅读 下载PDF
基于增强多头注意力机制的Optuna-BiGRU测井岩性识别 被引量:5
15
作者 王婷婷 王振豪 +1 位作者 李方 赵万春 《地球科学与环境学报》 CAS 北大核心 2024年第1期127-142,共16页
测井岩性识别是油气勘探开发中至关重要的内容。针对现有算法模型在处理测井曲线数据时,无法有效捕获曲线内部深层关联和深度方向关系、拟合能力较弱、难以准确提取关键特征、噪声干扰以及模型超参数调优过程复杂困难等问题,提出了一种... 测井岩性识别是油气勘探开发中至关重要的内容。针对现有算法模型在处理测井曲线数据时,无法有效捕获曲线内部深层关联和深度方向关系、拟合能力较弱、难以准确提取关键特征、噪声干扰以及模型超参数调优过程复杂困难等问题,提出了一种通过Optuna超参数优化双向门循环单元(Optuna-BiGRU)结合增强多头注意力机制(EMHA)的测井岩性识别模型——Optuna-BiGRU-EMHA模型。该模型引入残差机制和层归一化以改进多头注意力机制模块,并结合双向门循环单元(BiGRU)解决了处理测井数据时的问题,同时使用Optuna超参数优化框架和小波包自适应阈值方法分别解决了超参数调优和噪声干扰问题。首先通过交会图分析和敏感性箱线图分析选取自然伽马、深感应电阻率、中子-密度孔隙度、平均中子-密度孔隙度和岩性密度5个特征参数的测井数据,通过小波包自适应阈值方法对数据进行去噪,并将测井数据分割成数据块,然后利用Optuna框架优化BiGRU-EMHA模型超参数,最后通过实验对比K-近邻算法(KNN)、随机森林(RF)、极端梯度提升算法(XGBoost)、长短期记忆(LSTM)神经网络、BiGRU、双向长短期记忆(BiLSTM)神经网络、BiGRU-MHA、Optuna-BiGRU-EMHA等8种模型在测井岩性识别中的精度。结果表明:Optuna-BiGRU-EMHA模型识别准确率达到80%,相对于传统机器学习模型和深度学习模型,综合岩性识别准确率分别提高15.94%~23.14%和3.93%~15.94%,该模型为常规测井岩性识别提供了坚实的理论支持。 展开更多
关键词 岩性识别 深度学习 BiGRU 增强多头注意力机制 小波包自适应阈值 超参数优化
在线阅读 下载PDF
基于多头注意力机制字词联合的中文命名实体识别 被引量:2
16
作者 王进 王猛旗 +2 位作者 张昕跃 孙开伟 朴昌浩 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第1期77-84,共8页
针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低... 针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低冗余词汇干扰.建立了多头注意力字词联合模型,包含字词匹配、多头注意力、融合等模块.与现有中文命名实体识别方法相比,本算法避免了设计复杂的序列模型,方便与现有基于字的中文命名实体识别模型结合.采用召回率、精确率以及F 1值作为评价指标,通过消融试验验证模型各个部分的效果.结果表明,本算法在MSRA和Weibo数据集上F 1值分别提升0.28、0.69,在Resume数据集上精确率提升0.07. 展开更多
关键词 中文命名实体识别 词汇冗余 词汇边界信息 字词联合 多头注意力机制 BIE词集
在线阅读 下载PDF
基于深度学习和注意力机制的漏钢预报研究 被引量:1
17
作者 吴恒 张本国 +2 位作者 余浩辰 张瑞忠 范利锋 《冶金能源》 北大核心 2025年第3期61-66,共6页
为提高漏钢预报系统准确度,分析了热电偶的单偶时间序列特征与组偶空间联动特征,采用CNN对数据进行特征提取,再将时间序列温度特征作为BIGRU输入,构建CNN-BIGRU网络,并在输出端前引入MA机制。针对CNN-BIGRU网络易陷入局部最优解问题,利... 为提高漏钢预报系统准确度,分析了热电偶的单偶时间序列特征与组偶空间联动特征,采用CNN对数据进行特征提取,再将时间序列温度特征作为BIGRU输入,构建CNN-BIGRU网络,并在输出端前引入MA机制。针对CNN-BIGRU网络易陷入局部最优解问题,利用BO算法寻找CNN-BIGRU网络最优超参数组合,建立了BO-CNN-BIGRU-MA网络模型,并将其应用到连铸漏钢预报系统。结合实际连铸生产数据,对该漏钢预报模型进行测试。结果表明,该连铸漏钢预报系统的准确率为99.5%,报出率达到100%。 展开更多
关键词 漏钢预报 卷积神经网络 双向门控循环单元网络 贝叶斯优化 多头自注意力机制
在线阅读 下载PDF
基于多头注意力机制的CNN⁃BiLSTM高海拔多因素输电线路可听噪声预测 被引量:3
18
作者 黄悦华 张子豪 +2 位作者 陈庆 刘兴韬 涂金童 《高压电器》 CAS CSCD 北大核心 2024年第12期160-169,共10页
为了研究考虑高海拔多环境因素影响下输电线路可听噪声的预测问题,在海拔2400 m高度点的500 kV同塔双回线路下,搭建了边相外20、30、35 m三处可听噪声观测站,同时利用气象站进行多环境因素指标的数据采集。文中提出了一种基于多头注意... 为了研究考虑高海拔多环境因素影响下输电线路可听噪声的预测问题,在海拔2400 m高度点的500 kV同塔双回线路下,搭建了边相外20、30、35 m三处可听噪声观测站,同时利用气象站进行多环境因素指标的数据采集。文中提出了一种基于多头注意力机制(multi⁃head attention,MHA)的卷积神经网络(convolutional neural network,CNN)—双向长短期记忆网络(bi⁃directional long short term memory,BiLSTM)模型进行可听噪声预测。首先,采用皮尔逊相关性分析对多种环境因素数据进行相关程度计算比较与剔除;然后,为充分挖掘可听噪声数据中的时序特征,使用CNN对多环境因素数据进行特征提取;再将提取的特征向量输入到BiLSTM中进行训练,并通过在BiLSTM端引入多头注意力机制,使模型学习权重更高的数据特征,从而提升模型预测精度;结果表明,该方法构建的组合模型可以提升考虑多因素特征可听噪声数据的预测精度,且具有较好的泛化性。 展开更多
关键词 输电线路可听噪声 多环境因素 卷积神经网络 双向长短期记忆网络 多头注意力机制
在线阅读 下载PDF
基于字词融合和注意力机制的兽药文本命名实体识别
19
作者 颜士军 朱红梅 +1 位作者 王雅童 张亮 《中国农机化学报》 北大核心 2025年第3期336-342,352,共8页
针对兽药领域信息专业性强、关联性强、局部特征明显和一词多义的特点,以及主流的命名实体识别模型未充分利用词汇信息的问题,提出一种基于字词融合和注意力机制的兽药文本命名实体识别模型。首先,将BERT预训练模型得到的字向量和Word2... 针对兽药领域信息专业性强、关联性强、局部特征明显和一词多义的特点,以及主流的命名实体识别模型未充分利用词汇信息的问题,提出一种基于字词融合和注意力机制的兽药文本命名实体识别模型。首先,将BERT预训练模型得到的字向量和Word2vec得到的词向量融合。然后,在双向长短期记忆网络中提取全局上下文特征的基础上加入多头自注意力机制挖掘序列的局部特征。最后,通过条件随机场获得最佳标签序列来完成实体识别任务。在兽药文本数据集上进行多组对比试验,结果表明,该模型识别的准确率、召回率和F 1值分别为94.73%、95.29%和95.01%,性能均优于对比模型。 展开更多
关键词 兽药文本 命名实体识别 字词融合 多头自注意力机制
在线阅读 下载PDF
基于交叉注意力的车载环视系统外参标定算法
20
作者 黄书隽 林春雨 +2 位作者 覃雷栋 金智勇 赵耀 《北京交通大学学报》 北大核心 2025年第3期137-146,共10页
针对车载环视系统的多相机外参标定问题,本文提出一种基于交叉注意力机制的外参标定算法.首先通过残差卷积模块独立提取多视角图像的多尺度特征,以捕捉图像中的细节信息;其次,利用交叉注意力模块学习各相机图像的全局特征及其相邻相机... 针对车载环视系统的多相机外参标定问题,本文提出一种基于交叉注意力机制的外参标定算法.首先通过残差卷积模块独立提取多视角图像的多尺度特征,以捕捉图像中的细节信息;其次,利用交叉注意力模块学习各相机图像的全局特征及其相邻相机图像之间的特征关系,从而增强特征表达能力;再次,通过特征融合模块整合残差卷积模块和交叉注意力模块的特征,并回归外参参数;最后,在两种数据集上从性能评价和消融实验角度对模型进行验证.研究结果表明:与现有基于车道线和纹理的外参标定算法相比,本文算法在不同环境下具有更好的泛化性和鲁棒性,其性能指标和鸟瞰图拼接可视化结果均有显著提升;与现有的外参标定算法相比,所提出算法在绝对重投影误差和绝对光度误差上分别达到3.1和16.7,相较于目前最优的深度学习算法弱监督外参参数标定网络(Weakly-supervised Extrinsic Self-calibration Network,WESNet)分别提升了8.82%和8.74%.该研究成果可为车载环视系统的外参在线标定提供技术支撑. 展开更多
关键词 环视系统 深度学习 交叉注意力机制 外参标定
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部