期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
融合梯度预测和无参注意力的高效地震去噪Transformer 被引量:1
1
作者 高磊 乔昊炜 +2 位作者 梁东升 闵帆 杨梅 《计算机科学与探索》 北大核心 2025年第5期1342-1352,共11页
压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会... 压制随机噪声能够有效提升地震数据的信噪比(SNR)。近年来,基于卷积神经网络(CNN)的深度学习方法在地震数据去噪领域展现出显著性能。然而,CNN中的卷积操作由于感受野的限制通常只能捕获局部信息而不能建立全局信息的长距离连接,可能会导致细节信息的丢失。针对地震数据去噪问题,提出了一种融合梯度预测和无参注意力的高效Transformer模型(ETGP)。引入多头“转置”注意力来代替传统的多头注意力,它能在通道间计算注意力来表示全局信息,缓解了传统多头注意力复杂度过高的问题。提出了无参注意力前馈神经网络,它能同时考虑空间和通道维度计算注意力权重,而不向网络增加参数。设计了梯度预测网络以提取边缘信息,并将信息自适应地添加到并行Transformer的输入中,从而获得高质量的地震数据。在合成数据和野外数据上进行了实验,并与经典和先进的去噪方法进行了比较。结果表明,ETGP去噪方法不仅能更有效地压制随机噪声,并且在弱信号保留和同相轴连续性方面具有显著优势。 展开更多
关键词 地震数据去噪 卷积神经网络 TRANSFORMER 注意力模块 梯度融合
在线阅读 下载PDF
多尺度融合增强与注意力机制结合的图像语义分割
2
作者 刘书刚 杜昊东 王洪涛 《计算机应用与软件》 北大核心 2025年第6期225-233,278,共10页
针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特... 针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特征信息进行融合,在解码器末端使用改进的轻量化卷积注意力模块,使得对于物体边界分割更加充分。通过在Pascal VOC2007和Cityscapes数据集上进行实验验证,结果表明该方法较原有网络的精确度有显著的提高。 展开更多
关键词 语义分割 特征融合增强 注意力模块 编码器 上采样
在线阅读 下载PDF
融合PVTv2和DenseNet121的双注意力视网膜病变分级算法
3
作者 梁礼明 钟奕 +1 位作者 陈康泉 王成斌 《光电工程》 北大核心 2025年第4期15-29,共15页
针对视网膜眼底病变图像数据集类间分布不均和病灶区域识别困难的问题,提出一种融合金字塔视觉变压器(pyramid vision transformer v2,PVTv2)和DenseNet121双注意力视网膜病变分级算法。首先,该算法经由PVTv2和DenseNet121组成的双分支... 针对视网膜眼底病变图像数据集类间分布不均和病灶区域识别困难的问题,提出一种融合金字塔视觉变压器(pyramid vision transformer v2,PVTv2)和DenseNet121双注意力视网膜病变分级算法。首先,该算法经由PVTv2和DenseNet121组成的双分支网络,对视网膜图像的全局和局部信息进行初步提取;其次,在PVTv2和DenseNet121输出处分别采用空间通道协同注意力模块和多频率多尺度模块,优化局部特征细节,突显微小病灶特征,增强模型对复杂微小病变特征敏感性和病灶的定位感知;再次设计神经元交叉融合模块,建立病灶区域宏观布局和微观纹理信息之间的远程依赖关系,进而提高视网膜病变分级准确率;最后,利用混合损失函数缓解样本分布不均所导致的各等级之间模型关注度不平衡情况。在IDRID和APTOS 2019数据集上进行实验验证,其二次加权系数分别为90.68%和90.35%,IDRID数据集上的准确率和APTOS 2019数据集ROC曲线下方面积分别为80.58%和93.22%。实验结果表明,所提算法在视网膜病变分级领域具有一定应用价值。 展开更多
关键词 视网膜病变分级 空间通道协同注意力模块 多频率多尺度注意力模块 神经元交叉融合模块
在线阅读 下载PDF
融合监督注意力模块和跨阶段特征融合的图像修复改进网络 被引量:2
4
作者 黄巧玲 郑伯川 +1 位作者 丁梓成 吴泽东 《计算机应用》 CSCD 北大核心 2024年第2期572-579,共8页
非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两... 非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两阶段网络模型上,引入了SAM与CSFF模块。SAM通过提供真实图像监督信号,监督上阶段输出特征,确保传入下阶段特征信息的有效性。CSFF将上阶段编码器-解码器的特征融合后送入下阶段的编码器,以弥补上阶段修复中特征信息的损失。实验结果表明,在缺失区域占比为1%~10%时,相较于基线模型Gconv,Gconv_CS在CelebA-HQ数据集上峰值信噪比(PSNR)和结构相似性指数(SSIM)分别提高了1.5%和0.5%,Fréchet起始距离(FID)和L1损失分别降低了21.8%、14.8%;在Place2数据集上,前2个指标分别提高了26.7%和0.8%,后2个指标分别降低了7.9%、37.9%。将Gconv_CS用于去除大熊猫面部遮挡物时,取得了较好的修复视觉效果。 展开更多
关键词 图像修复 两阶段网络 跨阶段特征融合 监督注意力模块 门控卷积
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
5
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
基于Ghost卷积与自适应注意力的点云分类 被引量:1
6
作者 舒密 王占刚 《现代电子技术》 北大核心 2025年第6期106-112,共7页
点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,... 点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,提出一种基于点云Transformer的轻量级特征增强融合分类网络EFF-LPCT。EFF-LPCT使用一维化Ghost卷积对原始网络进行重构,以降低计算复杂度和内存要求;引入自适应支路权重,以实现注意力层级间的多尺度特征融合;利用多个通道注意力模块增强特征的通道交互信息,以提高模型分类效果。在ModelNet40数据集进行的实验结果表明,EFF-LPCT在达到93.3%高精度的同时,相较于点云Transformer减少了1.11 GFLOPs的浮点计算量和0.86×10^(6)的参数量。 展开更多
关键词 点云分类 Transformer网络 Ghost卷积 特征增强融合模块 ECA通道注意力 特征学习
在线阅读 下载PDF
注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测
7
作者 张志远 胡冀苏 +3 位作者 张跃跃 钱旭升 周志勇 戴亚康 《上海交通大学学报》 北大核心 2025年第8期1216-1224,共9页
基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤... 基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤分割任务为辅助任务的注意力引导多任务学习网络用于PLNM预测.首先,在肿瘤分割网络中,提出多分支各向异性大核注意力模块,通过不同分支和各向异性大卷积核的融合扩大的感受野以有效捕获肿瘤的局部和全局信息.其次,在PLNM预测网络中,设计多尺度特征交互融合注意力模块,对多尺度特征进行层次化融合筛选.在320例数据集的实验中,所提方法的精度召回曲线下面积值和受试者操作特征曲线下面积值分别为(85.44±2.04)%和(91.86±2.18)%,优于经典的单任务分类方法和多任务方法. 展开更多
关键词 前列腺癌盆腔淋巴结转移 多任务学习 多分支各向异性大核注意力模块 多尺度特征交互融合注意力模块 多参数磁共振
在线阅读 下载PDF
视听融合耦合坐标自注意的单目深度估计
8
作者 马存良 蒲江川 +2 位作者 许春冬 易见兵 嘉明珍 《计算机辅助设计与图形学学报》 北大核心 2025年第2期265-276,共12页
针对单目图片和声音回波信号都含空间信息这一特点,提出一种视听融合的单目深度估计方法.首先,通过池化金字塔模块融合分析回波与材料特征来自适应估计单目图片的离散深度值;然后,采用卷积神经网络和Transformer相结合的方法对单目图片... 针对单目图片和声音回波信号都含空间信息这一特点,提出一种视听融合的单目深度估计方法.首先,通过池化金字塔模块融合分析回波与材料特征来自适应估计单目图片的离散深度值;然后,采用卷积神经网络和Transformer相结合的方法对单目图片进行编码,改进坐标注意力提出坐标自注意力模块对图片特征解码获得离散深度值的概率分布;最后,将像素点的深度值建模为离散深度值的期望来构建最终深度图.实验结果表明,在仿真数据集Replica和Matterport3D数据集上,所提方法的均方根误差分别为0.204和0.875,相对误差分别为0.095和0.161,均取得具有竞争力的结果;在真实数据和含噪声数据中,该方法能够应用于真实场景的深度估计. 展开更多
关键词 单目深度估计 视听融合 池化金字塔模块 注意力
在线阅读 下载PDF
面向多模态交互式融合与渐进式优化的三维视觉理解 被引量:2
9
作者 何鸿添 陈晗 +3 位作者 刘洋 周礼亮 张敏 雷印杰 《计算机应用研究》 CSCD 北大核心 2024年第5期1554-1561,共8页
三维视觉理解旨在智能地感知和解释三维场景,实现对物体、环境和动态变化的深入理解与分析。三维目标检测作为其核心技术,发挥着不可或缺的作用。针对当前的三维检测算法对于远距离目标和小目标检测精度较低的问题,提出了一种面向多模... 三维视觉理解旨在智能地感知和解释三维场景,实现对物体、环境和动态变化的深入理解与分析。三维目标检测作为其核心技术,发挥着不可或缺的作用。针对当前的三维检测算法对于远距离目标和小目标检测精度较低的问题,提出了一种面向多模态交互式融合与渐进式优化的三维目标检测方法MIFPR。在特征提取阶段,首先引入自适应门控信息融合模块。通过把点云的几何特征融入图像特征中,能够获取对光照变化更有辨别力的图像表示。随后提出基于体素质心的可变形跨模态注意力模块,以驱使图像中丰富的语义特征和上下文信息融合到点云特征中。在目标框优化阶段,提出渐进式注意力模块,通过学习、聚合不同阶段的特征,不断增强模型对于精细化特征的提取与建模能力,逐步优化目标框,以提升对于远距离、小目标的检测精度,进而提高对于视觉场景理解的能力。在KITTI数据集上,所提方法对于pedestrian和cyclist等小目标的检测精度较最优基线有明显提升,证实了该方法的有效性。 展开更多
关键词 三维视觉理解 多模态 交互式融合 渐进式注意力 目标检测
在线阅读 下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络 被引量:2
10
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
在线阅读 下载PDF
基于多级特征融合与注意力模块的场景识别方法 被引量:1
11
作者 许华杰 秦远卓 杨洋 《计算机科学》 CSCD 北大核心 2022年第4期209-214,共6页
场景图像通常由背景信息和前景目标对象构成,用于场景识别任务的卷积神经网络(CNN)通常需要根据场景中关键目标的特征,甚至结合目标之间的位置关系来识别出场景所属类别。针对场景图像中较小尺寸的关键目标特征随着网络层次的加深而逐... 场景图像通常由背景信息和前景目标对象构成,用于场景识别任务的卷积神经网络(CNN)通常需要根据场景中关键目标的特征,甚至结合目标之间的位置关系来识别出场景所属类别。针对场景图像中较小尺寸的关键目标特征随着网络层次的加深而逐渐消失,从而导致场景识别错误的问题,提出了一种基于多级特征融合与注意力模块的场景识别方法。首先,将深度神经网络ResNet-18的特征提取部分划分出5个分支;然后,将5个分支输出的多级特征进行融合,利用融合后的特征进行场景识别和分类,以弥补丢失的目标信息;最后,在网络中加入改进的注意力模块,以达到着重学习场景图像中关键目标的目的,进一步提升识别效果。在多个场景数据集上进行实验对比,结果表明,所提方法在MIT-67,SUN-397和UIUC-Sports这3个场景数据集上的识别准确率分别达到了88.2%,79.9%和97.7%,相比目前主流的场景识别方法其具有更高的识别准确率。 展开更多
关键词 场景识别 卷积神经网络 特征融合 注意力模块
在线阅读 下载PDF
基于多注意力机制与跨特征融合的语义分割算法
12
作者 闵莉 董冰洁 安冬 《计算机工程》 CAS CSCD 北大核心 2024年第8期282-289,共8页
图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的... 图像语义分割技术在缺陷检测、医疗诊断、无人驾驶等领域广泛应用。针对现有语义分割模型普遍存在训练成本过高、目标轮廓分割效果不佳以及对小目标误分割、漏分割等问题,基于DeepLabv3+网络框架,提出多注意力机制与跨特征融合相结合的图像语义分割算法。该算法选取轻量级网络MobileNetv2作为主干,以缩短训练时间;通过优化空洞空间金字塔池化模块中空洞卷积的膨胀率,改善多尺度语义特征的提取效果,提高模型对小目标的分割能力,并将兼具通道与空间的卷积块注意力机制引入其中,更加关注对分割起决定作用的区域,从而加强对目标边界的提取;在编码器中设计跨特征融合模块,以聚合不同层次特征图的空间信息和语义信息,提高网络学习特征的能力;在编码和解码部分均引入坐标注意力机制,以分解全局平均池化的方式将位置信息嵌入到通道中,从而得到分割目标的准确位置。实验结果表明,所提算法F3crc-DeepLabv3+在PASCAL VOC 2012增强数据集和Cityspaces数据集上的平均交并比分别达到了75.06%和73.06%,平均精度分别达到了84.16%和82.05%,精确率分别达到了86.18%和85.43%,训练时间分别为10 h和13.8 h,具有较优的网络性能。 展开更多
关键词 语义分割 DeepLabv3+网络 MobileNetv2网络 坐标注意力 卷积块注意力模块 跨特征融合
在线阅读 下载PDF
可变形分支注意力融合网络的胰腺分割方法
13
作者 付艳贞 樊建聪 《小型微型计算机系统》 CSCD 北大核心 2024年第11期2717-2724,共8页
胰腺具有尺寸小、形状不规则且多变的特点,因此在腹部CT图像中自动分割胰腺具有极大的挑战性.为了适应胰腺特征并解决其分割困难的问题,本文提出了一种轻量级的可变形分支注意力融合网络(Deformable Branch Attention Fusion Network,DB... 胰腺具有尺寸小、形状不规则且多变的特点,因此在腹部CT图像中自动分割胰腺具有极大的挑战性.为了适应胰腺特征并解决其分割困难的问题,本文提出了一种轻量级的可变形分支注意力融合网络(Deformable Branch Attention Fusion Network,DBA-Net)作为胰腺自动分割方法.该方法首先将候选区域裁剪出来作为网络的输入,以便减少背景干扰并突出胰腺区域;然后引入可变形卷积使网络自适应地学习胰腺的空间结构;最后提出分支注意力融合模块实现低级别特征和高级别特征的融合,帮助解码器更好地还原特征图.本文的方法在NIH数据集上测试的Dice相似系数为85.3%,在MSD数据集上的Dice相似系数为78.9%,相比基线U-Net分别提高了3.9%和5.6%.实验结果表明本文的方法能够对胰腺进行更好的分割. 展开更多
关键词 胰腺分割 轻量级 可变形卷积 分支注意力融合模块
在线阅读 下载PDF
结合跨尺度特征融合与瓶颈注意力模块的轻量型红外小目标检测网络 被引量:9
14
作者 林再平 李博扬 +6 位作者 李淼 王龙光 吴天昊 罗伊杭 肖超 李若敬 安玮 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2022年第6期1102-1112,共11页
提出一种结合跨尺度特征融合与瓶颈注意力模块的轻量型单帧红外小目标检测网络。该网络在不引入额外神经元的前提下,直接在编码层和解码层之间进行高频多尺度特征交互,从而维持小目标在网络深层的响应幅值,实现小目标浅层空间结构特征... 提出一种结合跨尺度特征融合与瓶颈注意力模块的轻量型单帧红外小目标检测网络。该网络在不引入额外神经元的前提下,直接在编码层和解码层之间进行高频多尺度特征交互,从而维持小目标在网络深层的响应幅值,实现小目标浅层空间结构特征与深层高级语义特征之间的交互融合。同时,该网络在编码器瓶颈处级联轻量型混合注意力模块,进一步增强目标特征在网络深层的响应幅值。实验结果表明,该网络能有效抑制复杂背景杂波,并以较低参数量实现红外小目标检测。 展开更多
关键词 红外小目标检测 轻量型算法 跨尺度融合 瓶颈注意力模块
在线阅读 下载PDF
红外弱光下多特征融合与注意力增强铁路异物检测 被引量:1
15
作者 陈永 王镇 +1 位作者 卢晨涛 张娇娇 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期1884-1895,共12页
针对红外弱光环境下铁路异物检测时存在目标特征提取不充分、检测精度及实时性低的问题,在CenterNet目标检测模型的基础上,提出了一种红外弱光下多特征融合与注意力增强的无锚框异物检测深度学习模型。在红外目标多尺度特征提取的基础上... 针对红外弱光环境下铁路异物检测时存在目标特征提取不充分、检测精度及实时性低的问题,在CenterNet目标检测模型的基础上,提出了一种红外弱光下多特征融合与注意力增强的无锚框异物检测深度学习模型。在红外目标多尺度特征提取的基础上,引入自适应特征融合(ASFF)模块,充分利用目标高层语义与底层细粒度特征信息,提升红外目标特征提取能力。通过提出的空洞卷积增强注意力模块(Dilated-CBAM)进行关键特征提取,扩大注意力模块感受野范围,克服了原始CenterNet卷积块感受野映射区域变窄、无法检测弱小目标的问题,提升了无锚框网络的检测精度。使用Smooth L1损失函数进行训练,克服了L1损失函数在网络训练过程收敛速度慢及训练不稳定解的问题。通过铁路红外数据集及现场实验测试,结果表明:所提方法较原始CenterNet模型平均检测精度提高了8.03%,检测框置信度提升了31.23%,平均检测速率是Faster R-CNN模型的9.6倍,所提方法在红外弱光环境下能够更加快速准确地检测出铁路异物,主客观评价均优于对比方法。 展开更多
关键词 机器视觉 红外弱光 异物检测 自适应特征融合 空洞卷积增强注意力模块 无锚框网络
在线阅读 下载PDF
基于特征分治与融合的铁路扣件轻量化实时检测模型
16
作者 鄢化彪 林初欣 +3 位作者 黄绿娥 李东丽 刘词波 徐方奇 《北京交通大学学报》 北大核心 2025年第3期56-67,共12页
为解决嵌入式设备实时处理海量铁路扣件视觉图像数据时无法兼顾精确度与检测速度的问题,提出一种基于特征分治与融合的轻量化实时检测模型.首先,利用基于空间与通道特征的分治混合注意力模块强化模型的特征提取能力,降低图像中复杂背景... 为解决嵌入式设备实时处理海量铁路扣件视觉图像数据时无法兼顾精确度与检测速度的问题,提出一种基于特征分治与融合的轻量化实时检测模型.首先,利用基于空间与通道特征的分治混合注意力模块强化模型的特征提取能力,降低图像中复杂背景对目标的干扰;其次,提出一种二重分治特征融合方法,提升对不同大小目标的检测能力,同时在检测头(YOLO Head)的代价体构建方面,引入可变焦距损失函数(Varifocal Loss,VFL)代替YOLOX-Nano检测头的二值交叉熵损失函数,提高轻量化实时检测的精度;再次,使用随机Alpha-IoU(RAL)损失函数动态调整参数,延缓算法的收敛速度从而优化模型的训练曲线,避免模型训练过程陷入局部最优解;最后,采集10233个检测目标并划分为6种类型,选择YOLOX-Nano、Faster R-CNN及YOLOv8n等主流目标检测模型作为对比进行实验.实验结果表明:所提模型的每秒帧数(Frames Per Second,FPS)为60.24,平均精度(Average Precision,AP)为83.40%,较基线模型提高了3.24%;参数量为2.31 M,较YOLOX-Tiny减少54.08%,浮点数计算量为1.99 G,较YOLOX-Tiny减少69.15%.研究成果可为轻量级实时检测模型与计算系统提供参考. 展开更多
关键词 轻量级嵌入式系统 分治混合注意力模块 分治特征融合 代价体构建
在线阅读 下载PDF
基于组件特征与多注意力融合的车辆重识别方法 被引量:3
17
作者 胡煜 陈小波 +2 位作者 梁军 陈玲 梁书荣 《计算机研究与发展》 EI CSCD 北大核心 2022年第11期2497-2506,共10页
为提升车辆重识别算法的性能,提出一种基于车辆组件特征与多注意力融合的特征学习方法.首先,修改深度残差网络以获取具有丰富语义信息的特征图,同时应用语义分割网络将车辆图像划分为车辆正面、背面、顶面、侧面及背景区域,以实现组件... 为提升车辆重识别算法的性能,提出一种基于车辆组件特征与多注意力融合的特征学习方法.首先,修改深度残差网络以获取具有丰富语义信息的特征图,同时应用语义分割网络将车辆图像划分为车辆正面、背面、顶面、侧面及背景区域,以实现组件特征提取并消除视角变化的影响.然后,设计多注意力融合模块,基于面积注意力与特征注意力实现组件特征的自适应融合.最后,在多任务学习框架下,优化车辆重识别的三元组损失与辅助分类任务的交叉熵与焦点损失,对网络参数进行训练.在多个数据集上的实验结果表明,提出的方法在大多数性能指标上均超越了现有方法.进一步的消融实验证明了多注意力融合模块与多任务损失函数在特征提取上的有效性. 展开更多
关键词 车辆重识别 组件特征抽取 特征对齐 组件注意力模块 注意力融合
在线阅读 下载PDF
基于双分支注意力网络的青光眼诊断方法
18
作者 张旭刚 赵鲁江 +1 位作者 江志刚 张华 《武汉科技大学学报》 CAS 北大核心 2024年第5期384-393,共10页
通过分割眼底图像的视杯(OC)与视盘(OD)区域并计算二者直径之比得到的杯盘比(CDR)是诊断青光眼的一个重要指标,然而现有视杯/视盘分割方法的准确度较低,为此提出一种基于双分支注意力网络的青光眼诊断方法。首先,在图像输入主干网络前... 通过分割眼底图像的视杯(OC)与视盘(OD)区域并计算二者直径之比得到的杯盘比(CDR)是诊断青光眼的一个重要指标,然而现有视杯/视盘分割方法的准确度较低,为此提出一种基于双分支注意力网络的青光眼诊断方法。首先,在图像输入主干网络前使用边界到像素方向(BPD)方法增强眼底图像的轮廓信息;其次,在网络编码器部分结合ConvNeXt的全局交互优势以及U-Net的局部处理优势,充分提取全局和局部的病理语义信息;最后,在解码器特征重建阶段采用多重注意力融合模块,通过直接和间接映射重组两个编码器和上采样模块提取的平滑和突出特征,深度挖掘目标区域信息,以提高模型对视杯/视盘区域分割的准确性。在REFUGE、DRISHTI-GS和RIM-ONEr3三个具有互补性的临床数据集上进行对比实验,验证了所设计的改进模块在提高眼底图像分割效果上的有效性,而且本文方法可有效平衡OC和OD两个目标区域的分割精度,在定量指标和可视化效果上均优于对比方法。 展开更多
关键词 青光眼 眼底图像 视杯/视盘分割 双分支注意力网络 多重注意力融合模块
在线阅读 下载PDF
基于多尺度融合注意力改进UNet的遥感图像水体分割 被引量:7
19
作者 石甜甜 郭中华 +1 位作者 闫翔 魏士钦 《液晶与显示》 CAS CSCD 北大核心 2023年第3期397-408,共12页
针对遥感图像水体分割任务,提出了一种多尺度融合注意力模块改进的UNet网络——A-MSFAM-UNet,该方法在GF-2遥感图像水体分割任务中实现了端到端高分辨率遥感图像水体分割。首先,针对以往注意力模块全局池化操作带来的局部信息不敏感问题... 针对遥感图像水体分割任务,提出了一种多尺度融合注意力模块改进的UNet网络——A-MSFAM-UNet,该方法在GF-2遥感图像水体分割任务中实现了端到端高分辨率遥感图像水体分割。首先,针对以往注意力模块全局池化操作带来的局部信息不敏感问题,设计了一种多尺度融合注意力模块(MSFAM),该模块使用点卷积融合通道全局信息、深度可分离卷积弥补全局池化造成的信息丢失。MSFAM用于UNet跳跃连接后的特征融合部分重新分配特征点权重以提高特征融合效率,增强网络获取不同尺度信息的能力。其次,空洞卷积用于VGG16主干网络扩展感受野,在不损失分辨率的情况下聚合全局信息。结果表明,A-MSFAM-UNet优于其他通道注意力(SENet、ECANet)改进的UNet,在GF-2水体分割数据集上平均交并比(MIoU)、平均像素精度(MPA)和准确率(Acc)分别达到了96.02%、97.98%和99.26%。 展开更多
关键词 遥感图像 注意力模块 深度可分离卷积 特征融合 空洞卷积
在线阅读 下载PDF
基于多重多尺度融合注意力网络的建筑物提取 被引量:8
20
作者 杨栋杰 高贤君 +3 位作者 冉树浩 张广斌 王萍 杨元维 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第10期1924-1934,共11页
针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度... 针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度特征融合注意力(MFA). MECA设计在模型跳跃连接中,通过权重配比强化有效特征信息,避免注意力向无效特征的过渡分配;采用多重特征提取,减少有效特征的损失. MFA被嵌入模型底部,结合并行连续中小尺度空洞卷积与通道注意力,获得不同的空间特征与光谱维度特征,缓解空洞卷积造成的大型建筑物像素缺失问题. MMFA-Net通过融合MECA和MFA,提高了建筑物提取结果的完整度和精确率.将模型在WHU、 Massachusetts和自绘建筑物数据集上进行验证,在定量评价方面优于其他5种对比方法,F_(1)分数和IoU分别达到93.33%、87.50%;85.38%、74.49%和88.46%、79.31%. 展开更多
关键词 深度学习 高分辨遥感影像 建筑物提取 多尺度特征融合 高效通道注意力模块 U-Net
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部