期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
多速率交互式多模型粒子滤波研究
1
作者 齐立峰 冯新喜 李峰 《指挥控制与仿真》 2008年第2期5-7,10,共4页
由于粒子滤波的算法原理,其计算量很大。研究了针对机动目标的交互式多模型粒子滤波器(IMMPF)算法和多速率交互式多模型(MRIMM)算法,提出了多速率交互式多模型粒子滤波器(MRIMMPF)算法。该算法是在交互式多模型粒子滤波器(IMMPF)的基础... 由于粒子滤波的算法原理,其计算量很大。研究了针对机动目标的交互式多模型粒子滤波器(IMMPF)算法和多速率交互式多模型(MRIMM)算法,提出了多速率交互式多模型粒子滤波器(MRIMMPF)算法。该算法是在交互式多模型粒子滤波器(IMMPF)的基础上引入多速率技术,期望在保持IMMPF的性能同时能够减少因为粒子滤波带来的计算量;最后通过和一般基于EKF的IMM算法、IMMPF算法的比较,验证了该算法的有效性。 展开更多
关键词 交互式多模型 粒子滤波 多速率 多速率交互式多模型粒子滤波器
在线阅读 下载PDF
基于交互式多模型的多传感器组合导航系统 被引量:4
2
作者 林雪原 《兵工自动化》 2011年第6期27-30,共4页
针对复杂环境中组合导航系统模型参数变化导致单一参数滤波器滤波精度下降的问题,对基于交互式多模型的多传感器组合导航系统进行研究。给出状态基于全局信息的融合估计公式,将交互式多模型卡尔曼滤波算法应用于SST/GPS/SINS多传感器组... 针对复杂环境中组合导航系统模型参数变化导致单一参数滤波器滤波精度下降的问题,对基于交互式多模型的多传感器组合导航系统进行研究。给出状态基于全局信息的融合估计公式,将交互式多模型卡尔曼滤波算法应用于SST/GPS/SINS多传感器组合导航系统,并与单一模型下的卡尔曼滤波方法进行比较。仿真实验结果表明,该方法能提高组合导航系统的滤波精度与可靠性,但当实际的模型集不能覆盖实际的所有模态时,系统的滤波精度会有所下降。 展开更多
关键词 多传感器组合导航 交互式多模型滤波器 融合算法
在线阅读 下载PDF
多传感器多模型多尺度组合导航系统算法 被引量:2
3
作者 林雪原 郭丽龙 王捷 《海军航空工程学院学报》 2013年第2期101-106,共6页
多传感器组合导航系统是组合导航发展的方向之一。针对复杂环境,多模型自适应算法可以较好地解决模型及参数不确定的问题;而多尺度融合算法将基于模型的动态系统分析与具有统计特性的多尺度信号变换方法相结合,可有效提高系统的滤波精... 多传感器组合导航系统是组合导航发展的方向之一。针对复杂环境,多模型自适应算法可以较好地解决模型及参数不确定的问题;而多尺度融合算法将基于模型的动态系统分析与具有统计特性的多尺度信号变换方法相结合,可有效提高系统的滤波精度。为此,文章将多模型估计与多尺度滤波算法相结合构成多模型多尺度滤波算法,该算法用于多组合导航系统后,经仿真验证,相对于多模型或单模型多尺度滤波算法,系统的滤波精度明显提高。 展开更多
关键词 多传感器组合导航 交互式多模型滤波器 多尺度滤波算法 融合算法
在线阅读 下载PDF
基于UKF的马尔可夫参数自适应IFIMM算法 被引量:3
4
作者 夏忠婷 汪圣利 武洋 《现代雷达》 CSCD 北大核心 2009年第5期43-47,共5页
给出了一种基于不敏卡尔曼滤波(UKF)的马尔可夫参数自适应的新息滤波器交互式多模型算法,较好地解决了非线性条件下机动目标跟踪的问题,可获得比基于扩展卡尔曼滤波的交互式多模型(IMM)算法和基于UKF的IMM算法更好的稳定性和计算精度,... 给出了一种基于不敏卡尔曼滤波(UKF)的马尔可夫参数自适应的新息滤波器交互式多模型算法,较好地解决了非线性条件下机动目标跟踪的问题,可获得比基于扩展卡尔曼滤波的交互式多模型(IMM)算法和基于UKF的IMM算法更好的稳定性和计算精度,还避免了复杂的Jacobi矩阵运算;该算法结合了马尔可夫参数自适应和新息滤波器技术,实现了马尔可夫转移矩阵的自适应和量测噪声的减小。最后,通过Monte Carlo仿真进一步验证了该方法的正确性和有效性。 展开更多
关键词 不敏卡尔曼滤波 马尔可夫参数自适应 新息滤波器交互式多模型算法 目标跟踪
在线阅读 下载PDF
变拓扑非完全连通网络中的分布式机动目标跟踪算法研究
5
作者 刘杰 李建存 刘勇 《火控雷达技术》 2014年第3期63-70,共8页
完全分布式的机动目标跟踪是传感器网络等应用中亟待解决的关键问题。本文针对变拓扑非完全连通网络,提出一种基于网络共识的多模型信息滤波器(Consensus based Multiple Model Information Filter,C-MMIF)。C-MMIF基于标准IMM框架,保... 完全分布式的机动目标跟踪是传感器网络等应用中亟待解决的关键问题。本文针对变拓扑非完全连通网络,提出一种基于网络共识的多模型信息滤波器(Consensus based Multiple Model Information Filter,C-MMIF)。C-MMIF基于标准IMM框架,保证了估计最优性;并通过构造目标运动模式概率和状态估计的信息滤波形式,使节点间运算相互独立。同时,每个独立节点仅需与其相邻节点通讯,利用平均网络共识分布式优化算法对自身信息状态进行更新,实现节点间对目标运动模式及状态的一致估计。最后在无人机与地面传感器网络协同对地机动目标跟踪场景下进行算法仿真验证,结果证明该方法可以在无融合处理中心且网络拓扑变化情况下,使各节点实现对机动目标的一致有效跟踪。 展开更多
关键词 无线传感器网络 机动目标跟踪 网络共识 信息滤波器 交互式多模型滤波器 变拓扑 非完全连通网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部