期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于时空交互图注意力网络的多模态车辆轨迹预测模型
1
作者 李庆 韩楠 +6 位作者 李任杰 杨博渊 相东升 张杉彬 王家伟 吴绍伟 黄晨 《无线电工程》 2025年第2期254-263,共10页
在自动驾驶领域,交通参与者的轨迹预测是一个重要而具有挑战性的问题,充分捕捉轨迹数据中复杂的时空特征对于准确预测轨迹至关重要。为解决时空特征提取不足和多模态车辆轨迹预测问题,提出一种基于时空特征交互的多模态车辆轨迹预测模... 在自动驾驶领域,交通参与者的轨迹预测是一个重要而具有挑战性的问题,充分捕捉轨迹数据中复杂的时空特征对于准确预测轨迹至关重要。为解决时空特征提取不足和多模态车辆轨迹预测问题,提出一种基于时空特征交互的多模态车辆轨迹预测模型——STGA。采用基于动态图神经网络和基于融合注意力的时空Transformer网络捕获目标区域内车辆的空间交互特征和时间依赖性;设计特征融合的门控单元,实现对时空特征的有效融合,利用解码器生成目标区域未来车辆轨迹的概率分布;在公开数据集上对该模型进行了评估,并与基准模型进行了比较。实验结果表明,所提方法相比其他基准方法具有更好的性能,相较于最先进的基准方法,平均位移误差(Average Displacement Error,ADE)降低了32.03%,最终位移误差(Final Displacement Error,FDE)降低了14%。 展开更多
关键词 车辆运动预测 时空交互 图注意力网络 自动驾驶 深度学习
在线阅读 下载PDF
基于交互差分时空LSTM的网格化臭氧浓度预测 被引量:1
2
作者 刘恩海 任晓康 +3 位作者 张智 李妍 赵娜 张军 《河北工业大学学报》 CAS 2023年第3期36-43,共8页
臭氧浓度的预测对于大气环境治理、空气质量改善等起到了重要的作用。本文提出了一种交互差分时空LSTM网络预测模型(ST-IDN)来挖掘臭氧浓度历史数据的时间相关性和空间相关性,并成功将其应用到网格化臭氧浓度数据预测上。在该模型中,首... 臭氧浓度的预测对于大气环境治理、空气质量改善等起到了重要的作用。本文提出了一种交互差分时空LSTM网络预测模型(ST-IDN)来挖掘臭氧浓度历史数据的时间相关性和空间相关性,并成功将其应用到网格化臭氧浓度数据预测上。在该模型中,首先交互模块(IC)可以通过一系列的卷积操作来捕捉短期上下文信息,其次层融合模块(LF)可以融合不同层的空间信息来获得上一时刻丰富的空间信息,最后差分时空LSTM模块(DSTM)将捕捉到的时间信息和空间信息进行统一建模实现臭氧浓度预测。所构建模型分别与卷积LSTM网络(ConvLSTM)、预测循环神经网络(PredRNN)以及Memory in Memory网络(MIM)模型在河北省气象局提供的臭氧浓度数据上进行了对比分析,ST-IDN模型的平均绝对误差分别降低了19.836%、12.924%、7.506%。实验结果表明,所提出的模型能够提高臭氧浓度的预测精度。 展开更多
关键词 交互差分时空lstm预测网络 网格化臭氧浓度数据 臭氧浓度预测 时间信息 空间信息
在线阅读 下载PDF
基于时空图神经网络的异构交通参与者风险预测
3
作者 孟相浩 牛凌 +2 位作者 席军强 陈丹妮 吕超 《汽车工程》 EI CSCD 北大核心 2024年第9期1537-1545,共9页
有效预测驾驶员视野下的多交通参与者未来风险指标是为人类驾驶员提供风险预警,规避潜在碰撞风险的关键。大多数现有对风险的研究仅考虑场景中单一个体与本车之间的成对交互关系,并从评估而非预测的角度展开研究,而忽略异构交通参与者... 有效预测驾驶员视野下的多交通参与者未来风险指标是为人类驾驶员提供风险预警,规避潜在碰撞风险的关键。大多数现有对风险的研究仅考虑场景中单一个体与本车之间的成对交互关系,并从评估而非预测的角度展开研究,而忽略异构交通参与者之间不同的交互关系及未来风险状态。本文提出了一种基于时空图卷积神经网络的异构多目标风险预测方法Risk-STGCN,通过图卷积及时间卷积分别对单帧场景图信息与时序信息进行学习,结合多层时序预测网络对多目标风险指标TTC进行预测。在开源BLVD与实车自采数据集上进行了训练验证,并与常用序列预测模型进行对比。实验结果表明,所提模型在不同数据集上的平均TTC误差均在0.95 s以下,多实验指标均优于文中所提到的其他模型,具有良好的鲁棒性,同时提升了复杂交通场景下风险预测的可解释性。 展开更多
关键词 智能汽车 多交通参与者 交互表征 风险预测 时空图神经网络
在线阅读 下载PDF
基于HHO优化的时空水质预测模型 被引量:2
4
作者 李顺勇 张睿轩 谭红叶 《现代电子技术》 北大核心 2024年第2期176-182,共7页
我国水资源现状不容乐观,提高水质预测模型精度对水资源质量监测具有重要意义。为捕捉水质指标时序数据非线性变化趋势,水质指标多基于神经网络模型进行预测。但是现有模型忽略了河流流向,没有考虑上游监测点水质对下游水质的影响;同时... 我国水资源现状不容乐观,提高水质预测模型精度对水资源质量监测具有重要意义。为捕捉水质指标时序数据非线性变化趋势,水质指标多基于神经网络模型进行预测。但是现有模型忽略了河流流向,没有考虑上游监测点水质对下游水质的影响;同时现有模型多基于启发式优化算法中的粒子群算法调整神经网络的超参数,但该优化算法仍需设置较多超参数,而参数选取不当容易使模型陷入局部最优。为此,建立了时空水质预测模型(WT‐CNN‐LSTM‐HHO),利用哈里斯鹰优化算法(HHO),基于上游水质数据预测下游的氮、磷和溶解氧水质指标。实验结果显示,本文所提出的模型对水质预测性能有明显提升,可以实现设置较少超参数而达到较高的水质预测精度。 展开更多
关键词 时空水质预测 哈里斯鹰优化算法 lstm神经网络 时间序列 CNN‐lstm 小波降噪
在线阅读 下载PDF
基于多模式时空交互的行人轨迹预测模型 被引量:2
5
作者 桑海峰 陈旺兴 +1 位作者 王海峰 王金玉 《电子学报》 EI CAS CSCD 北大核心 2022年第11期2806-2812,共7页
在正确地规划合理路径方面,行人轨迹预测具有重要的意义.大多数现有轨迹预测方法在考虑周围行人的影响时,都是简单地将周围行人全部考虑在内,这必然带来的冗余信息.本文提出了一种基于多模式时空交互的行人轨迹预测模型,该模型通过多模... 在正确地规划合理路径方面,行人轨迹预测具有重要的意义.大多数现有轨迹预测方法在考虑周围行人的影响时,都是简单地将周围行人全部考虑在内,这必然带来的冗余信息.本文提出了一种基于多模式时空交互的行人轨迹预测模型,该模型通过多模式行人空间交互模块对不同行人在不同情况下给予不同的权重,使得模型可以有效减小冗余信息带来的影响.并且本文的模型针对于输入轨迹信息的不同重要程度,设计了加权信息融合模块在原轨迹信息的基础上融合了赋予不同权重的历史轨迹信息,使得模型的轨迹信息更加有效.此外,该模型采用了时间卷积网络模块来捕获行人的时间交互.实验结果表明,在公开数据集ETH和UCY上,相比于Social-STGCNN平均位移误差(Average Displacement Error,ADE)和终点位移误差(Final Displacement Error,FDE)分别降低了15%和14%. 展开更多
关键词 行人轨迹预测 多模式时空交互 行人空间交互 加权信息融合 时间卷积网络 时间交互
在线阅读 下载PDF
基于差分分解的有源配电网网供负荷预测方法
6
作者 胡壮丽 罗毅初 +2 位作者 刘斌 黄文琦 梁凌宇 《电子设计工程》 2024年第2期116-119,124,共5页
有源配电网在网供负荷预测过程中,容易受到天气突变影响,导致负荷预测结果不精准。为此,提出了基于差分分解的有源配电网网供负荷预测方法。采用差分分解方法,将负荷序列分解成负荷保持序列和负荷差分序列,使预测过程聚焦于序列的变化... 有源配电网在网供负荷预测过程中,容易受到天气突变影响,导致负荷预测结果不精准。为此,提出了基于差分分解的有源配电网网供负荷预测方法。采用差分分解方法,将负荷序列分解成负荷保持序列和负荷差分序列,使预测过程聚焦于序列的变化。根据时间序列间的相似度计算结果,评估预测负荷序列与实际负荷序列的相似程度,构建误差补偿模型,控制网供负荷预测。实验结果表明,在正常和连续降雨天气下,该方法负荷预测精准度最大值分别为95%、92%,说明使用该方法能够得到精准的预测结果。 展开更多
关键词 差分分解 有源配电网 lstm神经网络 负荷预测
在线阅读 下载PDF
基于时空特征的无线网络流量预测方法 被引量:1
7
作者 袁浙科 《无线通信技术》 2022年第3期24-28,34,共6页
无线网络流量分布具有空间上和时间上的特征,针对传统预测方法对流量分布空间特征的利用不足问题,提出三维卷积神经网络(3D-CNN)和长短期记忆网络(LSTM)相结合的无线网络流量预测模型。首先通过3D-CNN挖掘流量数据的局部时空关联性,并... 无线网络流量分布具有空间上和时间上的特征,针对传统预测方法对流量分布空间特征的利用不足问题,提出三维卷积神经网络(3D-CNN)和长短期记忆网络(LSTM)相结合的无线网络流量预测模型。首先通过3D-CNN挖掘流量数据的局部时空关联性,并利用空间注意力机制完善全局空间关联的提取;然后使用LSTM模型对抽象时空特征进行训练,并加入了注意力机制缓解循环神经网络的遗忘现象带来的信息损耗。运用此方法对"意大利电信大数据挑战赛"的公开数据集进行训练,其均方根误差(RMSE)和平均绝对误差(MAE)分别降至5.17和3.32,明显优于其他对比预测模型。 展开更多
关键词 无线网络 流量预测 时空特征挖掘 3D-CNN lstm
在线阅读 下载PDF
基于时空注意力机制的新冠肺炎疫情预测模型 被引量:5
8
作者 鲍昕 谭智一 +1 位作者 鲍秉坤 徐常胜 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第8期1495-1504,共10页
新冠肺炎疫情持续蔓延给人类社会带来深远影响,准确预测各地区的病毒传播趋势对防控疫情而言至关重要。现有研究主要基于传统的时序预测模型和传染病模型,鲜有考虑疫情地区关联复杂和时序依赖性强的特点,限制了其疫情预测的性能。为此,... 新冠肺炎疫情持续蔓延给人类社会带来深远影响,准确预测各地区的病毒传播趋势对防控疫情而言至关重要。现有研究主要基于传统的时序预测模型和传染病模型,鲜有考虑疫情地区关联复杂和时序依赖性强的特点,限制了其疫情预测的性能。为此,针对新冠肺炎疫情的预测任务,提出了一种时空注意力驱动的自编码器框架。通过引入空间注意力机制捕捉病毒感染序列间的动态空间关联性,利用时间注意力机制挖掘病毒感染序列中复杂的时序依赖性,以此实现对不同地区的新冠肺炎病毒传播趋势的准确预测。在模型的编码器端,融合空间注意力机制的长短期记忆(LSTM)网络,关联目标地区与其他地区的病毒感染序列,提取该区域近期新冠肺炎疫情的时序特征。在模型的解码器端,将时间注意力机制引入基于LSTM网络的解码器中,通过捕捉病毒感染序列的时序依赖性推测未来的新冠肺炎疫情趋势变化。在多个公开的新冠肺炎疫情数据集上对所提模型进行验证,实验结果表明:所提模型的预测性能超越了LSTM等模型;在公开的欧洲部分国家新冠肺炎疫情数据集上,预测误差指标RMSE和MAE分别降低了22.3%和25.0%,在中国部分省级单位新冠肺炎疫情数据集上,RMSE和MAE分别降低了10.1%和10.4%。 展开更多
关键词 新冠肺炎疫情预测 注意力网络 时空序列预测 长短期记忆(lstm)网络 自编码器
在线阅读 下载PDF
基于车流量数据的SARIMA和LSTM组合模型的比较研究
9
作者 李贺宇 南润 胡茜 《长春工业大学学报》 CAS 2023年第1期72-77,共6页
针对同时具有周期性、长记忆性等多种特征的车流量数据,单一地SARIMA或LSTM模型往往拟合效果不理想,而其组合模型可以弥补单一模型的不足。结合线性和非线性预测方法,文中分别建立了三个SARIMA-LSTM组合模型,随后,对车流量数据进行了预... 针对同时具有周期性、长记忆性等多种特征的车流量数据,单一地SARIMA或LSTM模型往往拟合效果不理想,而其组合模型可以弥补单一模型的不足。结合线性和非线性预测方法,文中分别建立了三个SARIMA-LSTM组合模型,随后,对车流量数据进行了预测分析,通过与SARIMA、LSTM两种单模型拟合效果的比较分析表明:1)对含周期性和长记忆性的数据,组合模型的预测效果更优;2)基于MA滤波方法的组合模型三比其他两种方法在提升模型预测精度上表现更好。 展开更多
关键词 季节性差分自回归滑动平均模型(SARIMA) 长短期记忆网络(lstm) MA滤波 车流量预测
在线阅读 下载PDF
基于深度学习的隐私保护方法研究 被引量:1
10
作者 熊婧 杜鹏懿 冯晓荣 《电子产品可靠性与环境试验》 2024年第2期76-81,共6页
准确和实时的轨迹数据发布能够为用户提供最新的交通和路况信息,有助于用户合理规划出行时间和路线,但是,位置信息的不当发布和反向推理容易泄露用户个人信息,甚至危及用户的生命安全。采用差分隐私方法添加的噪声,会导致隐私保护在数... 准确和实时的轨迹数据发布能够为用户提供最新的交通和路况信息,有助于用户合理规划出行时间和路线,但是,位置信息的不当发布和反向推理容易泄露用户个人信息,甚至危及用户的生命安全。采用差分隐私方法添加的噪声,会导致隐私保护在数据发布和有效性方面引入不准确性。为了提高发布数据的准确性和可用性,提出了一种基于深度学习和差分隐私模型的数据发布方法,确保时空轨迹数据的安全发布。首先,设计了一种自顶向下递归划分区域的方法,并根据递归深度的增加,多维度定义隐私预算分配规则;其次,通过时空图卷积网络(T-GCN)提取数据的时间和空间特征预测隐私预算矩阵,并对区域添加Laplace噪声,实现轨迹数据的隐私保护。实验结果表明,在满足ε-差分隐私的前提下,该方法能更合理地实现轨迹的隐私保护。 展开更多
关键词 隐私保护 深度学习 时空图卷积网络 差分隐私 隐私预算预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部