The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disast...The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo- tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.展开更多
Coal bursts involve the sudden,violent ejection of coal or rock into the mine workings. They are almost always accompanied by a loud noise,like an explosion,and ground vibration. Bursts are a particular hazard for min...Coal bursts involve the sudden,violent ejection of coal or rock into the mine workings. They are almost always accompanied by a loud noise,like an explosion,and ground vibration. Bursts are a particular hazard for miners because they typically occur without warning. Despite decades of research,the sources and mechanics of these events are not well understood,and therefore they are difficult to predict and control. Experience has shown,however,that certain geologic and mining factors are associated with an increased likelihood of a coal burst. A coal burst risk assessment consists of evaluating the degree to which these risk factors are present,and then identifying appropriate control measures to mitigate the hazard. This paper summarizes the U.S. and international experience with coal bursts,and describes the known risk factors in detail. It includes a framework that can be used to guide the risk assessment process.展开更多
The use of sulfur hexafiuoride (SF6) as a tracer gas for analyzing underground mine ventilation systems has been practiced for over 30 years. As a result, the methods used to release, sample, and analyze SF6 are wel...The use of sulfur hexafiuoride (SF6) as a tracer gas for analyzing underground mine ventilation systems has been practiced for over 30 years. As a result, the methods used to release, sample, and analyze SF6 are well accepted. As the complexity and size of underground mine ventilation networks increase, the ability of a SF6 to function as a convenient and rapid means of analysis diminishes. The utilization of multiple tracer gases can mitigate this by removing the need to purge the background presence of a tracer before conducting another release and allowing for a more comprehensive evaluation using multi-zone tech- niques. Recent studies have identified perfluoromethylcyclohexane (PMCH) as a possible supplement for SF6 in underground mine ventilation tracer studies. However, the deployment of PMCH remains a challenge because of this compounds physical properties. This paper evaluates a PMCH permeation plug release vessel (PPRV) under controlled turbulent conditions. The details of the experimental parameters used in the evaluation as well as a discussion regarding the performance of the PPRV are included.展开更多
基金Projects 50490273 and 50674087 supported by the National Natural Science Foundation of ChinaBK2007029 by the Natural Science Foundation of Jiangsu Province
文摘The study of dynamical behavior of water or gas flows in broken rock is a basic research topic among a series of key projects about stability control of the surrounding rocks in mines and the prevention of some disasters such as water inrush or gas outburst and the protection of the groundwater resource. It is of great theoretical and engineering importance in respect of promo- tion of security in mine production and sustainable development of the coal industry. According to the non-Darcy property of seepage flow in broken rock dynamic equations of non-Darcy and non-steady flows in broken rock are established. By dimensionless transformation, the solution diagram of steady-states satisfying the given boundary conditions is obtained. By numerical analysis of low relaxation iteration, the dynamic responses corresponding to the different flow parameters have been obtained. The stability analysis of the steady-states indicate that a saddle-node bifurcaton exists in the seepage flow system of broken rock. Consequently, using catastrophe theory, the fold catastrophe model of seepage flow instability has been obtained. As a result, the bifurcation curves of the seepage flow systems with different control parameters are presented and the standard potential function is also given with respect to the generalized state variable for the fold catastrophe of a dynamic system of seepage flow in broken rock.
文摘Coal bursts involve the sudden,violent ejection of coal or rock into the mine workings. They are almost always accompanied by a loud noise,like an explosion,and ground vibration. Bursts are a particular hazard for miners because they typically occur without warning. Despite decades of research,the sources and mechanics of these events are not well understood,and therefore they are difficult to predict and control. Experience has shown,however,that certain geologic and mining factors are associated with an increased likelihood of a coal burst. A coal burst risk assessment consists of evaluating the degree to which these risk factors are present,and then identifying appropriate control measures to mitigate the hazard. This paper summarizes the U.S. and international experience with coal bursts,and describes the known risk factors in detail. It includes a framework that can be used to guide the risk assessment process.
文摘The use of sulfur hexafiuoride (SF6) as a tracer gas for analyzing underground mine ventilation systems has been practiced for over 30 years. As a result, the methods used to release, sample, and analyze SF6 are well accepted. As the complexity and size of underground mine ventilation networks increase, the ability of a SF6 to function as a convenient and rapid means of analysis diminishes. The utilization of multiple tracer gases can mitigate this by removing the need to purge the background presence of a tracer before conducting another release and allowing for a more comprehensive evaluation using multi-zone tech- niques. Recent studies have identified perfluoromethylcyclohexane (PMCH) as a possible supplement for SF6 in underground mine ventilation tracer studies. However, the deployment of PMCH remains a challenge because of this compounds physical properties. This paper evaluates a PMCH permeation plug release vessel (PPRV) under controlled turbulent conditions. The details of the experimental parameters used in the evaluation as well as a discussion regarding the performance of the PPRV are included.