期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于E-ASW-LA模型的井下振动模式识别
1
作者 刘昕 熊文婷 +3 位作者 孔华 李德 于子涵 李忠伟 《石油机械》 北大核心 2025年第9期10-19,共10页
准确识别井下振动模式可针对具体异常类型采取相应的解决方案。为此,提出一种基于E-ASW-LA模型的井下振动模式识别方法。该模型包括滑动窗口层、特征提取层以及分类识别层。根据预处理后的井下振动数据方差特征设置动态窗口,得到不同长... 准确识别井下振动模式可针对具体异常类型采取相应的解决方案。为此,提出一种基于E-ASW-LA模型的井下振动模式识别方法。该模型包括滑动窗口层、特征提取层以及分类识别层。根据预处理后的井下振动数据方差特征设置动态窗口,得到不同长度的窗口;在特征提取层,对窗口内样本利用经验模态分解得到能表征样本振动模式的特征,并经过PCA算法降维处理;然后,输入到LSTM神经网络中学习时序依赖关系,利用注意力机制对特征分配权重,进而根据加权后的特征预测其振动模式。试验结果表明,该模型能捕捉样本的关键特征,精准挖掘井下振动模式内在的规律,识别精度达95.53%。研究结论为优化钻井参数和作业流程提供了重要决策依据。 展开更多
关键词 井下振动模式识别 振动数据 滑动窗口 经验模态分解 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部