期刊文献+
共找到394篇文章
< 1 2 20 >
每页显示 20 50 100
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法
1
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测
2
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归机
在线阅读 下载PDF
电阻抗断层成像技术的心肺信号降维集合经验模态分解方法研究
3
作者 李坤 李蔚琛 +4 位作者 郭奕彤 王伟策 王煜 闫孝姮 史学涛 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第5期539-549,共11页
心脏射血与肺通气活动信息的实时获取具有重要临床意义。本研究提出了一种基于胸部电阻抗断层成像(EIT)的心肺信号降维集合经验模态分解方法,以同时分离胸部EIT数据中的心脏射血和肺通气活动信号。招募9名志愿者进行了EIT胸部数据采集... 心脏射血与肺通气活动信息的实时获取具有重要临床意义。本研究提出了一种基于胸部电阻抗断层成像(EIT)的心肺信号降维集合经验模态分解方法,以同时分离胸部EIT数据中的心脏射血和肺通气活动信号。招募9名志愿者进行了EIT胸部数据采集。首先,根据屏息状态下胸部EIT数据中心脏活动信号的强弱对测量通道分类;随后,使用集合经验模态分解方法对自主呼吸状态下的EIT数据进行分解,并根据频谱特性对分解出的各分量归类,以得到肺通气EIT信号;然后,结合带通滤波方法,同时依据前述通道分类对心脏活动信号降维,得到心脏活动EIT信号;最后,重构得到通气相和心搏相EIT图像序列。结果表明,该方法可在通气相图像的肺区能够获得最高的肺通气功率谱峰(52.71±1.39)dB,在心搏相图像的心脏区域能够获得最高的心脏活动功率谱峰(43.05±3.26)dB,表明保留的通气信息和心脏活动信息非常丰富,同时在通气相图像心脏区域获得了最低心脏活动相关功率谱峰(10.02±2.65)dB,表明心脏活动的抑制效果更佳,相较于参考方法均有显著性差异(P<0.05)。研究表明,该方法可以有效分离肺通气与心脏活动相关信号,分别保留各自活动信息并抑制心脏对肺区成像的影响,同时实现对干扰信号的有效抑制,为临床上提供更加准确的治疗策略指导奠定基础。 展开更多
关键词 电阻抗断层成像 集合经验模态分解 心脏活动相关信号 肺通气
在线阅读 下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
4
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 Stacking融合
在线阅读 下载PDF
基于集合经验模态分解和指数能量法的水泵水轮机尾水管压力脉动信号特征提取 被引量:1
5
作者 田毓龙 郑祥豪 +2 位作者 李浩 张宇宁 李金伟 《力学与实践》 2024年第2期290-297,共8页
提取水泵水轮机尾水管压力脉动信号中的动态特征信息,准确识别涡带强度,是近年来水泵水轮机工程领域的研究重点。本文基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和模态指数能量法,对某水泵水轮机发电工况不同... 提取水泵水轮机尾水管压力脉动信号中的动态特征信息,准确识别涡带强度,是近年来水泵水轮机工程领域的研究重点。本文基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和模态指数能量法,对某水泵水轮机发电工况不同负荷下的尾水管压力脉动信号进行特征提取,得到如下结论。首先,基于EEMD的模态指数能量能够有效地反映信号中的能量分布规律。其次,在涡带增强过程中,基于EEMD的最大模态指数能量不断升高,表明尾水管内的流动状况变得更加复杂,涡带特征信息也更加丰富。最后,使用最大与平均指数能量构建的特征向量能够准确反映不同的尾水管涡带强度,并且能够作为智能分类器的输入特征向量,有利于后续进一步的识别与诊断,具有重要的工程意义。 展开更多
关键词 水泵水轮机 尾水管 集合经验模态分解 指数能量 特征提取
在线阅读 下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究 被引量:2
6
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
在线阅读 下载PDF
基于集合经验模态分解和排列熵的核电厂信号降噪研究 被引量:1
7
作者 王雨辰 李鼎 +1 位作者 胡玥 孙晨雨 《核科学与工程》 CAS CSCD 北大核心 2024年第1期98-107,共10页
本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实... 本文提出了一种基于集合经验模态分解和排列熵的电站信号降噪方法。该方法流程如下,首先,采用集合经验模态分解对电站典型实测信号进行了分解,获得对应的本征模态分量。其次,采用排列熵对本征模态分量进行混沌度的定量评价,从而实现实测信号中的有用信号和噪声信号的区分。对于后者,采用改进的小波软阈值降噪法进行降噪。最后,根据排列熵筛分后的有用信号和改进的小波软阈值降噪后的噪声信号进行重构,得到降噪后的信号。另外,本文也采用了主流的经验模态分解和局部均值分解对该信号进行了处理,并将分析结果进行对比。对比结果表明,基于本文所提方法得到的降噪后信号排列熵较小,表明降噪效果要优于以上两种方法。 展开更多
关键词 信号降噪 经验模态分解 局部均值分解 集合经验模态分解 排列熵
在线阅读 下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法
8
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
在线阅读 下载PDF
基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型 被引量:2
9
作者 殷礼胜 刘攀 +3 位作者 孙双晨 吴洋洋 施成 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4499-4508,共10页
该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞... 该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞翼问题,通过改进CEEMD算法将交通流量序列分解为体现路网交通趋势性、周期性及随机性的本征模态函数(IMF)分量,有效提取了其中的先验特征;随后,利用BiGRU网络挖掘交通流量序列中的时序相关性特征,为避免局部最优,并提高麻雀搜索算法(SSA)全局搜索及局部开发能力,采用ISSA对BiGRU网络权值参数迭代择优。实验结果表明,该组合预测模型中各组件对提高预测精度均起到正向作用,同时在不同交通流量数据集下的预测性能较对比算法均更优,展现了精准、快速的预测表现以及良好的泛化能力。 展开更多
关键词 短时交通流预测 互补集合经验模态分解 麻雀搜索算法 双向门控循环单元 边界局部特征延拓
在线阅读 下载PDF
基于互补式集合经验模态分解和IPSO_ LSSVM的短期风功率预测 被引量:10
10
作者 李鉴博 樊小朝 +2 位作者 史瑞静 王维庆 陈景 《水力发电》 北大核心 2020年第11期95-100,共6页
针对风电出力随时间变化具有非线性特点,本文提出一种基于互补式集合经验模态分解(CEEMD)和改进粒子群算法最小二乘支持向量机(IPSO_LSSVM)新型风功率预测组合模型。首先该方法利用CEEMD将风速序列分解为一系列相当平稳风电分量,以减少... 针对风电出力随时间变化具有非线性特点,本文提出一种基于互补式集合经验模态分解(CEEMD)和改进粒子群算法最小二乘支持向量机(IPSO_LSSVM)新型风功率预测组合模型。首先该方法利用CEEMD将风速序列分解为一系列相当平稳风电分量,以减少不同频率功率信号之间相互影响;其次针对各分量不同特点,采用改进粒子群算法优化核函数相关参数建立各自对应预测模型;最后将不同分量预测数据进行叠加得到风功率预测结果。通过仿真验证,本预测模型有较高预测精度,在工程中具有一定实用价值。 展开更多
关键词 风电出力 互补集合经验模态分解 最小二乘支持向量机 改进粒子群算法 组合模型 预测
在线阅读 下载PDF
基于互补式集合经验模态分解和SSA-ELM的短期风电功率预测 被引量:8
11
作者 魏鹏飞 樊小朝 +2 位作者 史瑞静 王维庆 闫亚东 《水力发电》 CAS 2021年第5期116-120,共5页
根据实际风电功率信号的波动性和非线性,提出了一种基于互补式集合经验模态分解(CEEMD)和樽海鞘群算法极限学习机(SSA-ELM)的短期风电功率预测模型。首先利用CEEMD将风电功率原始信号分解为一系列模态分量和剩余分量,以减小风电功率的... 根据实际风电功率信号的波动性和非线性,提出了一种基于互补式集合经验模态分解(CEEMD)和樽海鞘群算法极限学习机(SSA-ELM)的短期风电功率预测模型。首先利用CEEMD将风电功率原始信号分解为一系列模态分量和剩余分量,以减小风电功率的非平稳性;其次采用樽海鞘群算法优化极限学习机对不同分量进行预测;最后将不同分量的预测值叠加得到最终的风电功率预测结果。通过实例仿真验证,并与其他方法进行对比,结果表明该预测模型可提供较高精度的预测结果,具有一定的实用价值。 展开更多
关键词 互补集合经验模态分解 樽海鞘群算法 极限学习机 风电功率预测
在线阅读 下载PDF
基于互补集合平均经验模态分解的滚动轴承故障诊断方法研究 被引量:3
12
作者 张萍 李志农 +1 位作者 陈静铃 杨诚 《南昌航空大学学报(自然科学版)》 CAS 2019年第2期7-12,49,共7页
针对集合经验模态分解(EEMD)的机械故障诊断方法中存在的不足,即其加入的白噪声不能完全被中和。为了克服其不足,提出了基于互补集合经验模态分解(CEEMD)的滚动轴承故障诊断方法,提出的方法很好地克服了EEMD中存在的不足,有效地消除了IM... 针对集合经验模态分解(EEMD)的机械故障诊断方法中存在的不足,即其加入的白噪声不能完全被中和。为了克服其不足,提出了基于互补集合经验模态分解(CEEMD)的滚动轴承故障诊断方法,提出的方法很好地克服了EEMD中存在的不足,有效地消除了IMF中的残留噪声。仿真结果表明:提出的方法明显优于EEMD方法,可以减少重构误差,提取较为准确的IMF分量。最后,将CEEMD方法应用到滚动轴承故障诊断中,实验结果表明,CEEMD方法能准确的提取滚动轴承的特征故障频率。 展开更多
关键词 互补集合经验模态分解(ceemd) 故障诊断 滚动轴承
在线阅读 下载PDF
基于互补集合经验模态分解的近场脉冲地震信号降噪算法 被引量:4
13
作者 刘欣悦 单德山 谭康熹 《铁道建筑》 北大核心 2019年第5期59-63,共5页
针对近断层地震速度脉冲信号非线性非平稳的特点,建立了以互补集合经验模态分解(Coplementary Ensemble Empirical Mode Decomposition,CEEMD)为基础的一种降噪算法。该算法首先对仿真信号进行CEEMD操作,获得从高频到低频的固有模态函数... 针对近断层地震速度脉冲信号非线性非平稳的特点,建立了以互补集合经验模态分解(Coplementary Ensemble Empirical Mode Decomposition,CEEMD)为基础的一种降噪算法。该算法首先对仿真信号进行CEEMD操作,获得从高频到低频的固有模态函数(Intrinsic Mode Function,IMF),然后对IMF筛选叠加,得到多组含不同阶数的重构信号;通过算法相关度和逼近度组成综合评价指标,对多组重构信号进行筛选,得到全局最优重构组合Rec3,实现信号的有效去噪。然后采用以所选最优重构组合为基础的降噪算法分析实测速度脉冲信号。结果表明:该降噪算法具有很好的降噪效果,所得结果曲线较原信号曲线光滑平整,主脉冲信号清晰可辨,且由于算法本身没有人工加窗这类操作,使得其自适应良好,具有一定的实用性和可靠性。 展开更多
关键词 公路桥梁 信号降噪 数值计算 互补集合经验模态 速度脉冲
在线阅读 下载PDF
完全互补小波噪声辅助集总经验模态分解 被引量:19
14
作者 何刘 丁建明 +1 位作者 林建辉 刘新厂 《振动与冲击》 EI CSCD 北大核心 2017年第4期232-242,共11页
经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(C... 经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(CEEMDAN)恢复了EMD分解的完整性。在现有分析方法上提出了完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)算法。该算法能用更小的集总数、更少的迭代次数和极小的计算消耗获得更好的光谱分离效果和数目较少的筛选模态。 展开更多
关键词 经验模态分解 集合经验模态分解 噪声辅助 模态混叠 互补集总经验模态分解
在线阅读 下载PDF
基于互补自适应噪声的集合经验模式分解算法 被引量:17
15
作者 蔡念 黄威威 +2 位作者 谢伟 叶倩 杨志景 《电子与信息学报》 EI CSCD 北大核心 2015年第10期2383-2389,共7页
经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分... 经验模式分解(EMD)及其改进算法作为实用的信号处理方法至今仍然缺少严格的数学理论。该文尝试从数学理论上分析集合经验模式分解和自适应噪声集合经验模式分解的重构误差,推导了总体残留噪声的计算公式。针对自适应噪声集合经验模式分解在每一层固有模态分量上仍然存在残留噪声的问题,在分解过程中添加成对的正负噪声分量,提出一种基于互补自适应噪声的集合经验模式分解算法。实验结果表明,相比于集合经验模式分解和自适应噪声集合经验模式分解,所提的方法能够明显地减少每一层固有模态分量中残留的噪声,拥有较好的信号重构精度和更快的分解速度。 展开更多
关键词 经验模式分解 集合经验模式分解 自适应噪声集合经验模式分解 模态混叠
在线阅读 下载PDF
基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法 被引量:33
16
作者 王玉静 康守强 +3 位作者 张云 刘学 姜义成 Mikulovich V I 《电子与信息学报》 EI CSCD 北大核心 2014年第3期595-600,共6页
为了更有效地提取滚动轴承各状态振动信号的特征,该文提出了一种基于集合经验模态分解(EEMD)的敏感固有模态函数(IMF)选择算法。该算法对振动信号经EEMD分解后得到的固有模态函数采用峭度值、相关系数相结合的方法自动提取其敏感分量,... 为了更有效地提取滚动轴承各状态振动信号的特征,该文提出了一种基于集合经验模态分解(EEMD)的敏感固有模态函数(IMF)选择算法。该算法对振动信号经EEMD分解后得到的固有模态函数采用峭度值、相关系数相结合的方法自动提取其敏感分量,以此获得振动信号的初始特征。再运用奇异值分解和自回归(AR)模型方法得到滚动轴承各状态振动信号的特征向量,并将其输入到改进的超球多类支持向量机中进行智能识别,从而实现滚动轴承的正常状态,不同故障类型及不同性能退化程度的各状态识别。实验结果表明,相比基于经验模态分解结合自回归模型或奇异值分解的特征提取方法,该方法可更有效地提取滚动轴承故障特征信息,且识别精度更高。 展开更多
关键词 信号处理 状态识别 非平稳信号 集合经验模态分解(EEMD) 敏感固有模态函数(IMF)
在线阅读 下载PDF
互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用 被引量:6
17
作者 张文斌 江洁 +3 位作者 俞利宾 郭德伟 闵洁 普亚松 《太阳能学报》 EI CAS CSCD 北大核心 2020年第2期137-143,共7页
针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分... 针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱
在线阅读 下载PDF
基于集合经验模态分解的舰船辐射噪声能量分析 被引量:15
18
作者 杨宏 李亚安 李国辉 《振动与冲击》 EI CSCD 北大核心 2015年第16期55-59,共5页
利用集合经验模态分解方法研究舰船辐射噪声的特征参数提取及分类,对预处理后三种不同类别舰船辐射噪声进行能量分析,讨论其高低频能量差特征参数。计算不同类别、一定样本数量的舰船辐射噪声高低频能量差发现,同类舰船高低频能量差基... 利用集合经验模态分解方法研究舰船辐射噪声的特征参数提取及分类,对预处理后三种不同类别舰船辐射噪声进行能量分析,讨论其高低频能量差特征参数。计算不同类别、一定样本数量的舰船辐射噪声高低频能量差发现,同类舰船高低频能量差基本处于同一水平,不同类型舰船高低频能量差存在明显差异。结果表明,利用集合经验模态分解方法提取的舰船辐射噪声特征参数对舰船类别具有较好的可分性。可为水下目标信号探测及识别提供参考。 展开更多
关键词 集合经验模态分解 舰船辐射噪声 高低频能量差 特征提取
在线阅读 下载PDF
基于改进的集合经验模态方法振动信号分解 被引量:8
19
作者 刘涛 杜世昌 +2 位作者 黄德林 任斐 梁鑫光 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第9期1452-1459,共8页
针对集合经验模态分解(EEMD)中2个重要参数白噪声幅值系数和集合平均次数的优化问题,提出了一种基于变步长模式搜索的集合经验模态方法.该方法以EEMD期望的分解误差设定值为目标,利用自适应EEMD得到的白噪声幅值系数为初值,对不同振动... 针对集合经验模态分解(EEMD)中2个重要参数白噪声幅值系数和集合平均次数的优化问题,提出了一种基于变步长模式搜索的集合经验模态方法.该方法以EEMD期望的分解误差设定值为目标,利用自适应EEMD得到的白噪声幅值系数为初值,对不同振动信号能够自动获取合适的EEMD参数,解决模态混叠问题.仿真实验和工程案例验证结果表明:与传统EEMD和自适应EEMD相比,基于变步长模式搜索的EEMD方法具有更高的分解精度及更快的运算效率. 展开更多
关键词 集合经验模态分解 变步长模式搜索 振动信号 模态混叠
在线阅读 下载PDF
采用改进互补集总经验模态分解的电能质量扰动检测方法 被引量:7
20
作者 吴新忠 邢强 +2 位作者 陈明 成江洋 杨春雨 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第9期1834-1843,共10页
针对集总经验模态分解(EEMD)方法加噪参数(噪声幅值、集总次数)需人为确定、分解残余噪声大以及计算耗时长的缺点,提出一种自适应快速互补集总经验模态分解(AFCEEMD)方法.该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采... 针对集总经验模态分解(EEMD)方法加噪参数(噪声幅值、集总次数)需人为确定、分解残余噪声大以及计算耗时长的缺点,提出一种自适应快速互补集总经验模态分解(AFCEEMD)方法.该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采用高频辅助分解的优势,并以极值点分布特性作为评价指标自适应选择最优加噪频率.通过对EEMD加噪准则的研究,推导出加噪幅值和分解次数采取固定值:0.01SD和2次,且以正负成对的形式加入到原始信号中.通过仿真实验和搭建的电能质量扰动平台的实测数据验证了所提方法的自适应性和计算性能,而且适用于电能质量扰动检测与分析. 展开更多
关键词 集总经验模态分解(EEMD) 自适应快速互补EEMD(AFceemd) 极值点分布 加噪频率参数优化 电能质量扰动
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部