采用0.13μm Si Ge双极互补型金属氧化物半导体(Bi CMOS)工艺,设计了一款X波段功率放大器芯片。通过采用共射共基放大器电路结构和有源线性化偏置电路,提高了电路耐压值和功放最大输出功率。通过两级共射共基放大电路级联,结合级间匹...采用0.13μm Si Ge双极互补型金属氧化物半导体(Bi CMOS)工艺,设计了一款X波段功率放大器芯片。通过采用共射共基放大器电路结构和有源线性化偏置电路,提高了电路耐压值和功放最大输出功率。通过两级共射共基放大电路级联,结合级间匹配电路及输出匹配电路,提高了放大器的增益和工作带宽。采用非均匀功率管版图布局及镇流电阻,提升功率放大器电路可靠性。测试结果表明,在8-12 GHz频段内,放大器回波损耗均小于-10 d B,小信号增益大于30 d B,1 d B压缩点输出功率为16 d Bm,饱和功率大于19 d Bm,峰值饱和功率附加效率大于18%。该放大器工作在AB类,采用5 V供电,静态工作电流为80 m A,面积为1.22 mm×0.73 mm。展开更多
文摘采用0.13μm Si Ge双极互补型金属氧化物半导体(Bi CMOS)工艺,设计了一款X波段功率放大器芯片。通过采用共射共基放大器电路结构和有源线性化偏置电路,提高了电路耐压值和功放最大输出功率。通过两级共射共基放大电路级联,结合级间匹配电路及输出匹配电路,提高了放大器的增益和工作带宽。采用非均匀功率管版图布局及镇流电阻,提升功率放大器电路可靠性。测试结果表明,在8-12 GHz频段内,放大器回波损耗均小于-10 d B,小信号增益大于30 d B,1 d B压缩点输出功率为16 d Bm,饱和功率大于19 d Bm,峰值饱和功率附加效率大于18%。该放大器工作在AB类,采用5 V供电,静态工作电流为80 m A,面积为1.22 mm×0.73 mm。
文摘低噪声放大器(LNA)是无线通信系统的重要组成部分。采用TSMC 0.18μm互补金属氧化物半导体(CMOS)工艺,设计了一款能够满足LTE和802.11 b/g/e等多种无线通信应用标准的2~5 GHz的宽带CMOS LNA。为了实现宽带输入匹配与足够大的宽带功率增益,并在有限的功耗下获得较低的噪声系数,设计的LNA使用了两级电阻反馈、电流复用结构和噪声消除技术。后仿真结果表明,在1.5 V直流电源供电下,电路功耗仅9.03 m W,低噪声放大器芯片核心面积仅为0.76 mm×0.81 mm,在2~5 GHz频段内,噪声系数为2.46~2.73 d B,功率增益大于16.7 d B,输入输出反射系数均低于-10 d B。因此,所设计的低噪声放大器,性能优良,适用于低噪声、低功耗的宽带无线通信产品。