利用地沟油与正常食用油的导电率不同导致单位体积电阻不同,提出一种基于互补金属氧化物半导体工艺(Complementary Metal Oxide Semiconductor,CMOS)的线性检测模块。由于使用直接选择与短接到地的方法实现电阻串分压,使得分压线性度更...利用地沟油与正常食用油的导电率不同导致单位体积电阻不同,提出一种基于互补金属氧化物半导体工艺(Complementary Metal Oxide Semiconductor,CMOS)的线性检测模块。由于使用直接选择与短接到地的方法实现电阻串分压,使得分压线性度更高。在脉冲计数的作用下,电阻分压通过与参考电压相比较可以得到不同的高电平数,不仅可以区分地沟油与正常食用油,还可以得出正常油掺入地沟油的质量分数。在检测计核心电路设计方面,由于采用CMOS工艺设计,所以可以实现低面积和低功耗的检测。展开更多
SiC MOSFET因其高击穿电压、高开关速度、低导通损耗等性能优势而被广泛应用于各类电力电子变换器中。然而,由于其短路耐受时间仅为2~7μs,且随母线电压升高而缩短,快速可靠的短路保护电路已成为其推广应用的关键技术之一。为应对不同...SiC MOSFET因其高击穿电压、高开关速度、低导通损耗等性能优势而被广泛应用于各类电力电子变换器中。然而,由于其短路耐受时间仅为2~7μs,且随母线电压升高而缩短,快速可靠的短路保护电路已成为其推广应用的关键技术之一。为应对不同母线电压下的Si C MOSFET短路故障,文中提出一种基于漏源电压积分的自适应快速短路保护方法(drain-sourcevoltageintegration-basedadaptivefast short-circuit protection method,DSVI-AFSCPM),研究所提出的DSVI-AFSCPM在硬开关短路(hardswitchingfault,HSF)和负载短路(fault under load,FUL)条件下的保护性能,进而研究不同母线电压对DSVI-AFSCPM的作用机理。同时,探究Si CMOSFET工作温度对其响应速度的影响。最后,搭建实验平台,对所提出的DSVI-AFSCPM在发生硬开关短路和负载短路时不同母线电压、不同工作温度下的保护性能进行实验测试。实验结果表明,所提出的DSVI-AFSCPM在不同母线电压下具有良好的保护速度自适应性,即母线电压越高,短路保护速度越快,并且其响应速度受Si CMOSFET工作温度影响较小,两种短路工况下工作温度从25℃变化到125℃,短路保护时间变化不超过90 ns。因此,该文为Si CMOSFET在不同母线电压下的可靠使用提供一定技术支撑。展开更多
基于标准N阱互补金属氧化物半导体集成电路(CM O S)工艺,设计了P+/N-w e ll/P-sub光电管结构和传统的N+/P-sub光电管结构的有源像素单元。像素单元面积为100μm×100μm,感光面积百分比分别为77.6%和89%,采用了上华0.6μm两层金属...基于标准N阱互补金属氧化物半导体集成电路(CM O S)工艺,设计了P+/N-w e ll/P-sub光电管结构和传统的N+/P-sub光电管结构的有源像素单元。像素单元面积为100μm×100μm,感光面积百分比分别为77.6%和89%,采用了上华0.6μm两层金属两层多晶硅CM O S工艺研制。测试分析结果表明P+/N-w e ll/P-sub结构在暗电流大小,光照响应信号大小,感光灵敏度和感光动态范围上均优于传统的N+/P-sub结构。通过改变复位信号频率,将P+/N-w e ll/P-sub结构像素的感光动态范围提高到139.8 dB,改善了有源像素的感光性能。展开更多
文摘利用地沟油与正常食用油的导电率不同导致单位体积电阻不同,提出一种基于互补金属氧化物半导体工艺(Complementary Metal Oxide Semiconductor,CMOS)的线性检测模块。由于使用直接选择与短接到地的方法实现电阻串分压,使得分压线性度更高。在脉冲计数的作用下,电阻分压通过与参考电压相比较可以得到不同的高电平数,不仅可以区分地沟油与正常食用油,还可以得出正常油掺入地沟油的质量分数。在检测计核心电路设计方面,由于采用CMOS工艺设计,所以可以实现低面积和低功耗的检测。
文摘基于标准N阱互补金属氧化物半导体集成电路(CM O S)工艺,设计了P+/N-w e ll/P-sub光电管结构和传统的N+/P-sub光电管结构的有源像素单元。像素单元面积为100μm×100μm,感光面积百分比分别为77.6%和89%,采用了上华0.6μm两层金属两层多晶硅CM O S工艺研制。测试分析结果表明P+/N-w e ll/P-sub结构在暗电流大小,光照响应信号大小,感光灵敏度和感光动态范围上均优于传统的N+/P-sub结构。通过改变复位信号频率,将P+/N-w e ll/P-sub结构像素的感光动态范围提高到139.8 dB,改善了有源像素的感光性能。