期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
改进的正弦辅助多元经验模式分解及其在滚动轴承故障诊断中的应用 被引量:5
1
作者 吴利锋 吕勇 +2 位作者 袁锐 朱熹 游俊 《中国机械工程》 EI CAS CSCD 北大核心 2022年第11期1336-1344,共9页
正弦辅助多元经验模式分解算法(SA-MEMD)通过在额外的通道中加入正弦辅助信号来减少模式混合,但该算法对噪声敏感,辅助信号的主频率比需要根据经验确定,为此,提出了一种改进的正弦辅助多元经验模式分解算法。首先使用非局部均值降噪对... 正弦辅助多元经验模式分解算法(SA-MEMD)通过在额外的通道中加入正弦辅助信号来减少模式混合,但该算法对噪声敏感,辅助信号的主频率比需要根据经验确定,为此,提出了一种改进的正弦辅助多元经验模式分解算法。首先使用非局部均值降噪对原始信号进行预处理,减少噪声对算法的干扰,其次使用短时傅里叶变换确定信号频谱范围,然后以最小集成EMD能量熵准则选择最优主频率比,最后根据正弦辅助多元经验模式分解算法的步骤进行信号处理。模拟信号和实际信号的对比分析结果证明,改进的方法可以减少传统的多元经验模式分解方法存在的模式混合现象。 展开更多
关键词 故障诊断 正弦辅助多元经验模式分解 模式混合 短时傅里叶变换 能量熵
在线阅读 下载PDF
完全互补小波噪声辅助集总经验模态分解 被引量:19
2
作者 何刘 丁建明 +1 位作者 林建辉 刘新厂 《振动与冲击》 EI CSCD 北大核心 2017年第4期232-242,共11页
经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(C... 经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(CEEMDAN)恢复了EMD分解的完整性。在现有分析方法上提出了完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)算法。该算法能用更小的集总数、更少的迭代次数和极小的计算消耗获得更好的光谱分离效果和数目较少的筛选模态。 展开更多
关键词 经验模态分解 集合经验模态分解 噪声辅助 模态混叠 互补集总经验模态分解
在线阅读 下载PDF
互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用 被引量:6
3
作者 张文斌 江洁 +3 位作者 俞利宾 郭德伟 闵洁 普亚松 《太阳能学报》 EI CAS CSCD 北大核心 2020年第2期137-143,共7页
针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分... 针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱
在线阅读 下载PDF
基于辅助信号经验模式分解的海上视频图像去雾技术
4
作者 王孝通 郭珈 +2 位作者 金鑫 徐冠雷 马跃 《光电工程》 CAS CSCD 北大核心 2013年第5期64-71,共8页
海面及天空区域的视频图像局部或全局极值点匮乏,传统的二维经验模式分解(BEMD)失效。本文分析了BEMD的频率特性,给出了高频辅助信号的构造方法,将高频辅助信号加入原视频图像信号,分解得到的内蕴模式分量(IMC)减去IMC的辅助信号,得到... 海面及天空区域的视频图像局部或全局极值点匮乏,传统的二维经验模式分解(BEMD)失效。本文分析了BEMD的频率特性,给出了高频辅助信号的构造方法,将高频辅助信号加入原视频图像信号,分解得到的内蕴模式分量(IMC)减去IMC的辅助信号,得到原信号的最接近辅助信号的频率分量。以此类推,分解可得到原信号的不同频率分量。这种基于辅助信号的经验模式分解(ASBEMD),解决了局部或全局极值点匮乏的海上视频图像的分解问题,并应用于海上降质图像的增强处理,取得了与目前公认去雾效果较好的HE算法一致的结果。 展开更多
关键词 二维经验模式分解 辅助信号经验模式分解 去雾 海上图像
在线阅读 下载PDF
基于改进的互补因散经验模式分解法的谐波检测法 被引量:1
5
作者 吴衍 马碧芳 +1 位作者 李立耀 陈国钦 《高技术通讯》 EI CAS 北大核心 2019年第5期462-466,共5页
提出了基于改进的互补因散经验模式分解(CEEMD)算法的谐波电流检测法。该方法能将电流信号分解成内在模式函数(IMF),并创新地在分解过程中加入正负成对的高斯白噪声,抵消噪声余量,抑制了模式混叠问题,同时在筛分过程中加入平滑处理这个... 提出了基于改进的互补因散经验模式分解(CEEMD)算法的谐波电流检测法。该方法能将电流信号分解成内在模式函数(IMF),并创新地在分解过程中加入正负成对的高斯白噪声,抵消噪声余量,抑制了模式混叠问题,同时在筛分过程中加入平滑处理这个改进措施。使用新方法设计谐波检测电路,并做了与EEMD算法的对比仿真实验,结果表明:两个算法都可以分解出电流信号的谐波和基波分量,但是改进的CEEMD算法抑制了模式混叠问题,分解出来的基波分量与原信号基本吻合,两者的相关系数(CORR)为0.997,相对均方根误差(RRMSE)为0.00411,说明该法能够准确有效地分解谐波电流信号,同时该算法做了平滑处理的改进,可满足有源电力滤波器(APF)的需要。 展开更多
关键词 改进的互补因散经验模式分解(CEEMD)算法 模式混叠 谐波检测法 有源电力滤波器(APF) 电力系统
在线阅读 下载PDF
中值互补集合经验模态分解 被引量:3
6
作者 刘淞华 何冰冰 +3 位作者 郎恂 陈启明 张榆锋 苏宏业 《自动化学报》 EI CAS CSCD 北大核心 2023年第12期2544-2556,共13页
针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complemen... 针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD,CEEMD)的MS问题,证明了使用中值算子替代算术平均算子对抑制MS的有效性.为了兼具抑制MS和残留噪声的性能,MCEEMD算法首次在集合过程中结合了中值和平均算子.具体地,所提方法首先添加N对互补的白噪声至原信号中,并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions,IMFs),然后分别对其中互补相关的IMFs两两取平均得到N组IMFs,最后使用中值算子处理上述N组IMFs得到输出结果.对仿真信号与两个真实案例的分析结果表明,本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题,而且避免了单一使用中值算子的两个缺点:分解完备性差和IMFs中存在的毛刺现象. 展开更多
关键词 模态分裂 中值算子 互补白噪声 互补集合经验模式分解
在线阅读 下载PDF
基于CEEMD-MPE与SDAE的局部放电模式识别 被引量:2
7
作者 蒋伟 赵显阳 +3 位作者 樊汝森 徐鹏 沈道义 杨俊杰 《计算机应用与软件》 北大核心 2024年第8期175-181,195,共8页
针对变压器局部放电故障信息提取困难以及局部放电类型识别准确率低等问题,提出一种基于CEEMD-MPE与SDAE相结合的局部放电模式识别算法。对局部放电原始信号进行CEEMD分解,得到多个固有模态分量(IMF),根据相关系数筛选出系数最大的IMF... 针对变压器局部放电故障信息提取困难以及局部放电类型识别准确率低等问题,提出一种基于CEEMD-MPE与SDAE相结合的局部放电模式识别算法。对局部放电原始信号进行CEEMD分解,得到多个固有模态分量(IMF),根据相关系数筛选出系数最大的IMF作为最优分量,计算其不同尺度下的排列熵值;将有效排列熵值作为特征数据集输入到SDAE中进行无监督学习训练;利用Softmax分类器输出放电类型。实验结果表明,该算法识别精准率为98%,召回率为96.67%,F1得分为97.17%,能够快速、准确地识别局部放电类型。 展开更多
关键词 互补集合经验模态分解 多尺度排列熵 栈式降噪自编码 局部放电 特征提取 模式识别
在线阅读 下载PDF
改进的HHT变换在光纤振动模式识别中的应用 被引量:7
8
作者 王艳歌 程丹 刘继红 《现代电子技术》 北大核心 2019年第9期22-25,共4页
针对双马赫-曾德尔(M-Z)干涉型光纤振动传感系统输出信号非线性、非平稳特点,提出基于互补总体经验模态分解(CEEMD)的希尔伯特-黄变换(HHT)模式识别算法。该算法采用CEEMD将振动信号分解成多个本征模态函数(IMF),利用各阶IMF的归一化自... 针对双马赫-曾德尔(M-Z)干涉型光纤振动传感系统输出信号非线性、非平稳特点,提出基于互补总体经验模态分解(CEEMD)的希尔伯特-黄变换(HHT)模式识别算法。该算法采用CEEMD将振动信号分解成多个本征模态函数(IMF),利用各阶IMF的归一化自相关函数筛选出噪声分量进行中值滤波;然后对各阶IMF分量做Hilbert变换,基于Hilbert边际能量谱构造特征向量;最后利用概率神经网络(PNN)实现振动信号的模式识别。对四种典型光纤振动信号的实验验证表明,算法的平均正确识别率最低可达85%。 展开更多
关键词 HHT应用 光纤振动传感技术 模式识别 双马赫-曾德尔干涉仪 互补总体经验模态分解 信号分解 信号消噪 信号特征提取
在线阅读 下载PDF
基于CSAEMD-KECA和角结构距离的齿轮故障识别方法 被引量:1
9
作者 高庆云 郭力 陈长华 《机电工程》 CAS 北大核心 2023年第1期11-22,共12页
作为机械传动系统中的重要部件,齿轮经常运行在变转速变载荷工况下,直接采集到的齿轮故障信号(原始信号)往往存在强背景噪声。由于其原始信号中存在噪声信号,干扰了齿轮故障模式识别,且传统故障识别方法准确率较低,针对这一问题,提出了... 作为机械传动系统中的重要部件,齿轮经常运行在变转速变载荷工况下,直接采集到的齿轮故障信号(原始信号)往往存在强背景噪声。由于其原始信号中存在噪声信号,干扰了齿轮故障模式识别,且传统故障识别方法准确率较低,针对这一问题,提出了一种基于CSAEMD-KECA和角结构距离的齿轮故障识别方法。首先,使用互补正弦辅助经验模式分解(CSAEMD)方法对齿轮故障信号进行了分解重构,以去除信号中的噪声成分;然后,利用核熵成分分析(KECA)方法对CSAEMD分解重构后的信号进行了特征提取,选取了对样本(CSAEMD分解重构后的信号)瑞丽熵贡献值较大的3个特征向量,并将其作为投影向量,样本数据向投影向量投影形成了特征数据集;最后,搭建了故障模拟实验台,对上述方法的可行性进行了验证,采用角结构距离的聚类方法对特征数据集进行了聚类分析。研究结果表明:利用实验台数据进行的有效实验,能够准确地识别出齿轮的各种故障,其聚类准确率达到98.3%;该结果可验证基于CSAEMD-KECA和角结构距离的方法在齿轮故障识别上的有效性。 展开更多
关键词 机械传动系统 齿轮故障诊断 互补正弦辅助经验模式分解 核熵成分分析 聚类分析 信号分解重构 信号特征提取
在线阅读 下载PDF
基于NA-MEMD和互信息的脑电特征提取方法 被引量:10
10
作者 韩笑 佘青山 +1 位作者 高云园 罗志增 《传感技术学报》 CAS CSCD 北大核心 2016年第8期1140-1148,共9页
多变量经验模式分解(MEMD)方法不需要根据先验知识选取基函数,能同时对多通道数据进行自适应分解,适合于分析具有高度相关性和非平稳性的脑电信号。为了判别包含有用信息的内蕴模式函数(IMFs),提出一种基于噪声辅助多变量经验模式分解(N... 多变量经验模式分解(MEMD)方法不需要根据先验知识选取基函数,能同时对多通道数据进行自适应分解,适合于分析具有高度相关性和非平稳性的脑电信号。为了判别包含有用信息的内蕴模式函数(IMFs),提出一种基于噪声辅助多变量经验模式分解(NA-MEMD)和互信息的方法,并用于脑电特征提取。首先使用NA-MEMD算法对多通道信号进行分解得到多尺度IMF分量,然后采用互信息法分别计算各尺度上信号与其IMF分量、噪声与其IMF分量、信号IMF分量与噪声IMF分量之间的相关性,接着根据敏感因子筛选包含有用信息的IMF分量,将其叠加得到对应的重构信号,最后采用共同空间模式(CSP)法对重构信号进行特征提取,再用支持向量机(SVM)实现分类。使用仿真数据和实际数据集BCI Competition IV Data Set 1进行测试,与现有的其他方法比较,验证了所提方法的有效性。 展开更多
关键词 脑电信号 噪声辅助多变量经验模式分解 互信息 共同空间模式
在线阅读 下载PDF
微弱信号检测的变尺度Duffing振子方法 被引量:10
11
作者 行鸿彦 吴慧 刘刚 《电子学报》 EI CAS CSCD 北大核心 2020年第4期734-742,共9页
针对强噪声背景下微弱信号检测问题,本文把互补集总经验模式分解(CEEMD)方法和变尺度Duffing振子结合,提出了一种新的微弱信号检测方法.利用CEEMD将复杂含噪信号分解为不同的固有模态函数(IMF),通过Duffing系统分岔图及其变化找到相轨... 针对强噪声背景下微弱信号检测问题,本文把互补集总经验模式分解(CEEMD)方法和变尺度Duffing振子结合,提出了一种新的微弱信号检测方法.利用CEEMD将复杂含噪信号分解为不同的固有模态函数(IMF),通过Duffing系统分岔图及其变化找到相轨迹变化的临界阈值,实现含噪信号的信息检测.结果表明,本文所提方法不仅可以很好地免疫噪声,而且能有效检测出信噪比低至-73dB的多频率周期信号. 展开更多
关键词 微弱信号检测 混沌 分岔图 互补集总经验模式分解方法
在线阅读 下载PDF
基于EEMD的信号处理方法分析和实现 被引量:35
12
作者 时世晨 单佩韦 《现代电子技术》 2011年第1期88-90,94,共4页
Hilbert-Huang变换是一种具有良好自适应性,能够对非线性非平稳的信号进行分析的时频分析方法。而经验模式分解是HHT的核心部分。针对传统EMD分解带来的模态混叠问题,介绍了引入白噪声辅助分析方法的改进型算法EEMD并且通过Matlab平台... Hilbert-Huang变换是一种具有良好自适应性,能够对非线性非平稳的信号进行分析的时频分析方法。而经验模式分解是HHT的核心部分。针对传统EMD分解带来的模态混叠问题,介绍了引入白噪声辅助分析方法的改进型算法EEMD并且通过Matlab平台进行了信号仿真系统设计和实验,验证了EEMD方法的抗混分解能力。 展开更多
关键词 Hilbert—Huang变换 经验模式分解 模态混叠 噪声辅助处理
在线阅读 下载PDF
基于CEEMD能量熵特征提取和VNWOA-LSSVM的风力机轴承故障诊断方法研究 被引量:11
13
作者 万晓静 孙文磊 陈坤 《机电工程》 CAS 北大核心 2020年第10期1186-1191,共6页
针对极端复杂工况下风力发电机组轴承故障诊断问题,对风力机运行状态监测中常用的故障诊断方法进行了研究,提出了一种基于互补总体经验模式分解能量熵的故障特征提取和改进的鲸鱼算法来优化最小二乘支持向量机的风力机轴承故障诊断方法... 针对极端复杂工况下风力发电机组轴承故障诊断问题,对风力机运行状态监测中常用的故障诊断方法进行了研究,提出了一种基于互补总体经验模式分解能量熵的故障特征提取和改进的鲸鱼算法来优化最小二乘支持向量机的风力机轴承故障诊断方法;通过互补总体经验模式分解,降低了噪声对微弱故障信号的干扰,提取了各分量的能量熵构建故障特征集合,作为诊断模型的输入;利用冯诺依曼拓扑结构的特性,克服了鲸鱼算法中收敛慢、寻优精度低的问题,构建了改进的鲸鱼算法优化最小二乘支持向量机的诊断模型分类器,实现了对不同故障类型特征参数的准确分类;最后利用试验数据集进行了测试。研究结果表明:所提出的方法计算速度快、泛化能力强、分类正确率高,其诊断结果优于基于鲸鱼算法优化的最小二乘支持向量机,远优于传统的最小二乘支持向量机算法。 展开更多
关键词 风力机轴承 互补总体经验模式分解 能量熵 冯诺依曼拓扑结构优化鲸鱼算法 最小二乘支持向量机
在线阅读 下载PDF
基于全矢NA-MEMD的滚动轴承故障诊断方法 被引量:4
14
作者 金兵 马艳丽 +1 位作者 李凌均 韩捷 《机床与液压》 北大核心 2017年第19期189-193,198,共6页
针对EMD分解多通道信号得到的IMF分量在数量和频率成分出现的不匹配现象和单通道分析方法存在信息利用不充分的问题,提出了一种基于噪声辅助多维经验模式分解(NA-MEMD)与全矢谱结合的滚动轴承故障诊断方法——全矢NA-MEMD。利用NA-MEMD... 针对EMD分解多通道信号得到的IMF分量在数量和频率成分出现的不匹配现象和单通道分析方法存在信息利用不充分的问题,提出了一种基于噪声辅助多维经验模式分解(NA-MEMD)与全矢谱结合的滚动轴承故障诊断方法——全矢NA-MEMD。利用NA-MEMD对同源双通道信号和噪声辅助信号构成的多通道信息自适应分解成一系列IMF分量;根据相关系数从同源双通道中选取包含故障主要信息的IMF分量进行重构;将重构信号进行全矢信息融合来提取故障特征。通过仿真信号和实验信号分析验证该方法的有效性。 展开更多
关键词 噪声辅助的多维经验模式分解 全矢谱 相关系数 信息融合
在线阅读 下载PDF
基于CEEMD的心音信号小波包去噪算法研究 被引量:29
15
作者 董利超 郭兴明 郑伊能 《振动与冲击》 EI CSCD 北大核心 2019年第9期192-198,222,共8页
针对传统心音去噪方法易将其部分高频有用信息作为噪声滤除而造成滤波后的心音信号失真及信息丢失的问题,提出了一种基于互补总体经验模态分解(CEEMD)的小波包变换去噪算法。首先通过互补总体经验模态分解将心音信号分解为从高频到低频... 针对传统心音去噪方法易将其部分高频有用信息作为噪声滤除而造成滤波后的心音信号失真及信息丢失的问题,提出了一种基于互补总体经验模态分解(CEEMD)的小波包变换去噪算法。首先通过互补总体经验模态分解将心音信号分解为从高频到低频的不同固有模态函数分量(IMFs),并利用自相关函数客观界定信号的模态分量范围;然后对噪声主导模态分量和混叠模态分量采用小波包变换进行滤波提取有用信息后,与剩余固有模态分量进行重构得到去噪后的信号。实验结果表明,改进的算法不仅可以去除心音中的噪声成分,明显改善心音信号的信噪比和均方根误差,而且能够有效保留信号的高频有用信息,且在不同噪声水平下的去噪性能均优于传统算法,鲁棒性较好。 展开更多
关键词 心音 互补总体经验模式分解 自相关函数 小波包 去噪
在线阅读 下载PDF
基于双向门控循环单元的地表水氨氮预测 被引量:3
16
作者 任永琴 金柱成 +2 位作者 俞真元 王晓丽 彭士涛 《中国环境科学》 EI CAS CSCD 北大核心 2022年第2期672-679,共8页
为提高水环境中NH_(4)^(+)-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH_(4)^(+)-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神... 为提高水环境中NH_(4)^(+)-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH_(4)^(+)-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神经网络对各成份进行预测,将所有分解成份的预测结果相加即可获得最终预测结果.以2017年6月~2020年2月鄱阳湖的NH_(4)^(+)-N数据进行模型性能验证.结果表明,利用CCB模型在1d后的NH_(4)^(+)-N预测中平均绝对百分比误差为3.38%,在7d后的NH_(4)^(+)-N预测中平均绝对百分比误差为6.82%,在15d后的NH_(4)^(+)-N预测中平均绝对百分比误差为9.41%,优于本文中参与比较的其他模型.CCB模型在NH_(4)^(+)-N预测方面具有良好的预测性能. 展开更多
关键词 鄱阳湖 氨氮(NH_(4)^(+)-N) 互补完全集合经验模式分解(CCEEMDAN) 双向门控循环单元(BiGRU)
在线阅读 下载PDF
基于分时段规范变量残差分析的高速自动机动态特性监测 被引量:3
17
作者 王宝祥 潘宏侠 《振动与冲击》 EI CSCD 北大核心 2019年第20期90-96,共7页
针对高速自动机运动形态的多行程特点,提出一种分时段规范变量残差分析(Phase-partitioned Canonical Variate Dissimilarity Analysis,PCVDA)方法用于高速自动机的动态特性监测。通过建立整个行程与短时瞬态冲击信号的对应关系,将冲击... 针对高速自动机运动形态的多行程特点,提出一种分时段规范变量残差分析(Phase-partitioned Canonical Variate Dissimilarity Analysis,PCVDA)方法用于高速自动机的动态特性监测。通过建立整个行程与短时瞬态冲击信号的对应关系,将冲击信号划分为多个时段;采用正弦波辅助经验模态分解(Sinusoid-assisted Empirical Mode Decomposition,SEMD)将每个时段的冲击信号分解为高频和低频成分,分别计算两种成分的过去和未来数据的规范变量的残差,建立基于高低频成分的PCVDA模型监测高速自动机在不同时段的动态特性。对某12.7 mm高速自动机的监测结果验证了PCVDA模型的有效性。 展开更多
关键词 时段划分 规范变量残差分析 正弦辅助经验模态分解 动态监测 高速自动机
在线阅读 下载PDF
基于CCWEEMDAN和包络谱熵的轴承故障诊断研究 被引量:3
18
作者 林严 林建辉 +1 位作者 何刘 熊仕勇 《机械设计与制造》 北大核心 2019年第7期127-130,134,共5页
完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)是经验模态分解(EMD)的改进算法,是一种噪声辅助的自适应非线性非平稳数据处理方法。噪声辅助能克服EMD方法处理间歇信号出现的“模态混叠”问题。而相比较互补集总经验模态分解(CEEMD)... 完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)是经验模态分解(EMD)的改进算法,是一种噪声辅助的自适应非线性非平稳数据处理方法。噪声辅助能克服EMD方法处理间歇信号出现的“模态混叠”问题。而相比较互补集总经验模态分解(CEEMD),完全互补小波噪声辅助集总经验模态分解能实现更优的性能。在轴承故障诊断的应用中,这里的方法利用小波分解高频段噪声细节成分,添加到原始轴承故障信号中,提取出本征模态信号。利用包络谱熵判断轴承故障导致的冲击响应特征所在本征模态信号,通过对轴承外圈、内圈局部故障状态下的特征提取进行故障诊断,结果表明该方法能有效提取故障冲击响应特征。 展开更多
关键词 完全互补小波噪声辅助集总经验模态分解 模态混叠 包络谱熵 轴承 故障诊断
在线阅读 下载PDF
基于改进HHT的矿山微震信号多尺度特征提取及分类研究 被引量:3
19
作者 王英乐 左宇军 +3 位作者 陈斌 林健云 郑禄璟 万入祯 《矿冶工程》 CAS CSCD 北大核心 2022年第6期7-12,共6页
针对矿山微震与爆破信号难以识别问题,提出基于改进Hilbert-Huang变换(HHT)的矿山微震信号识别方法。该方法引入互补集合经验模态分解(CEEMD)对HHT改进,信号被自适应分解后,计算IMF分量的偏度、峭度、Hilbert边际谱能量、Lempel-Ziv复... 针对矿山微震与爆破信号难以识别问题,提出基于改进Hilbert-Huang变换(HHT)的矿山微震信号识别方法。该方法引入互补集合经验模态分解(CEEMD)对HHT改进,信号被自适应分解后,计算IMF分量的偏度、峭度、Hilbert边际谱能量、Lempel-Ziv复杂度以及重构信号的分形盒维数,运用拉普拉斯得分(LS)对5种时频域特征参数降维,最后通过遗传算法(GA)优化的支持向量机(SVM)模型,实现微震信号的分类识别。经400组微震和爆破信号的实例分析验证,两类信号的5种特征参数均有较大差异,改进HHT法识别效果优于传统经验模态分解法(EMD)和局部均值分解法(LMD),且基于改进HHT和GA-SVM分类模型准确率达到95%,证实了此识别方法的准确性。 展开更多
关键词 微震信号 爆破信号 信号识别 模式识别 互补集合经验模态分解 HILBERT-HUANG变换 拉普拉斯得分
在线阅读 下载PDF
改进自适应CEEMD方法在心电信号去噪中的应用 被引量:13
20
作者 付林军 王凤随 刘正男 《电子测量与仪器学报》 CSCD 北大核心 2020年第4期50-57,共8页
针对传统经验模式分解(EMD)方法存在的模式混淆问题,以及总体平均经验模式分解(EEMD)不具备完备性和计算量太大的缺陷,提出一种改进的自适应互补集合经验模式分解(CEEMD)方法。该方法在分析加噪准则的基础上,引入峰值误差(PE)作为加噪... 针对传统经验模式分解(EMD)方法存在的模式混淆问题,以及总体平均经验模式分解(EEMD)不具备完备性和计算量太大的缺陷,提出一种改进的自适应互补集合经验模式分解(CEEMD)方法。该方法在分析加噪准则的基础上,引入峰值误差(PE)作为加噪评价指标,来自适应确定最佳加噪幅值;然后利用原始信号的幅值标准差以及加入噪声的幅值标准差的比值系数,对不同信号自适应获取总体平均次数;最后将该方法运用到由美国麻省理工学院建立的MIT-BIH心电数据库中,很好地实现了对目标信号的去噪。实验表明,所提方法的平均信噪比(SNR)达到了19.2497、均方根误差(RMSE)仅为0.0473,平均平滑度指标R只有0.0305。算法有效地去除了原始心电信号噪声,改善了信号的平滑度,提高了运算效率。 展开更多
关键词 心电信号 自适应 互补集合经验模式分解 信噪比
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部