期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
总体平均经验模式分解与1.5维谱方法的研究 被引量:72
1
作者 陈略 訾艳阳 +1 位作者 何正嘉 成玮 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第5期94-98,共5页
针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方... 针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方法对含有故障特征信息的IMF进行后处理.该方法具有避免模式混淆、抑制高斯白噪声、检测非线性耦合特征等特性,并以此来提取故障的微弱特征信息.根据待处理信号的时频特性与EEMD原理,提出了在EEMD方法中加入高斯白噪声的准则,通过信号仿真验证了EEMD方法的抗混分解能力.将EEMD与1.5维谱方法应用于机车走行部齿轮箱的监测诊断中,成功地提取出齿轮箱大齿轮齿根早期的裂纹故障. 展开更多
关键词 总体平均经验模式分解 1.5维谱 特征提取 齿轮裂纹故障
在线阅读 下载PDF
基于总体平均经验模式分解近似熵和混合PSO-BP算法的轴承故障诊断方法 被引量:9
2
作者 张淑清 黄文静 +3 位作者 胡永涛 宿新爽 陆超 姜万录 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3048-3054,共7页
针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP... 针对机械系统的非平稳、非线性特性,提出了一种基于总体平均经验模式分解(EEMD)近似熵和混合PSO-BP算法的轴承故障诊断方法。EEMD能够解决EMD的端点效应,改善处理非线性信号时的局限性;引入随机权重和压缩因子来改进粒子群算法,优化BP神经网络的权值和阈值,解决BP网络的全局收敛问题。将信号经EEMD得到的IMF分量与近似熵结合,组成特征向量,再将构造的特征向量输入到PSO-BP神经网络中进行模式识别。实验及工程应用实例证明了该方法的有效性和优越性。 展开更多
关键词 轴承 故障诊断 总体平均经验模式分解 近似熵 混合粒子群神经网络
在线阅读 下载PDF
互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用 被引量:6
3
作者 张文斌 江洁 +3 位作者 俞利宾 郭德伟 闵洁 普亚松 《太阳能学报》 EI CAS CSCD 北大核心 2020年第2期137-143,共7页
针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分... 针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱
在线阅读 下载PDF
改进的噪声总体集合经验模式分解方法在轴承故障诊断中的应用 被引量:5
4
作者 阮荣刚 李友荣 +1 位作者 易灿灿 肖涵 《机械设计与制造》 北大核心 2019年第1期153-157,共5页
在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improv... 在复杂的流程工业中,机械设备往往处在高速、重载、高温、高辐射的环境中,轴承作为主要的机械零部件起着重要作用。由于轴承故障振动信号的微弱和不平稳的特性,造成故障特征向量提取和故障诊断存在着困难。提出一种改进的CEEMDAN(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)轴承故障诊断方法。通过对比分析仿真信号和实测信号可以得知:ICEEMDAN方法可以改善信号重构质量,具有良好的自适应性,能够提高故障信号的信噪比,从而可以有效地识别并提取有用的故障特征信息。 展开更多
关键词 自适应噪声总体集合经验模式分解 本征模态函数 故障诊断 特征提取
在线阅读 下载PDF
基于改进的互补因散经验模式分解法的谐波检测法 被引量:1
5
作者 吴衍 马碧芳 +1 位作者 李立耀 陈国钦 《高技术通讯》 EI CAS 北大核心 2019年第5期462-466,共5页
提出了基于改进的互补因散经验模式分解(CEEMD)算法的谐波电流检测法。该方法能将电流信号分解成内在模式函数(IMF),并创新地在分解过程中加入正负成对的高斯白噪声,抵消噪声余量,抑制了模式混叠问题,同时在筛分过程中加入平滑处理这个... 提出了基于改进的互补因散经验模式分解(CEEMD)算法的谐波电流检测法。该方法能将电流信号分解成内在模式函数(IMF),并创新地在分解过程中加入正负成对的高斯白噪声,抵消噪声余量,抑制了模式混叠问题,同时在筛分过程中加入平滑处理这个改进措施。使用新方法设计谐波检测电路,并做了与EEMD算法的对比仿真实验,结果表明:两个算法都可以分解出电流信号的谐波和基波分量,但是改进的CEEMD算法抑制了模式混叠问题,分解出来的基波分量与原信号基本吻合,两者的相关系数(CORR)为0.997,相对均方根误差(RRMSE)为0.00411,说明该法能够准确有效地分解谐波电流信号,同时该算法做了平滑处理的改进,可满足有源电力滤波器(APF)的需要。 展开更多
关键词 改进的互补因散经验模式分解(CEEMD)算法 模式混叠 谐波检测法 有源电力滤波器(APF) 电力系统
在线阅读 下载PDF
中值互补集合经验模态分解 被引量:3
6
作者 刘淞华 何冰冰 +3 位作者 郎恂 陈启明 张榆锋 苏宏业 《自动化学报》 EI CAS CSCD 北大核心 2023年第12期2544-2556,共13页
针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complemen... 针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD,CEEMD)的MS问题,证明了使用中值算子替代算术平均算子对抑制MS的有效性.为了兼具抑制MS和残留噪声的性能,MCEEMD算法首次在集合过程中结合了中值和平均算子.具体地,所提方法首先添加N对互补的白噪声至原信号中,并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions,IMFs),然后分别对其中互补相关的IMFs两两取平均得到N组IMFs,最后使用中值算子处理上述N组IMFs得到输出结果.对仿真信号与两个真实案例的分析结果表明,本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题,而且避免了单一使用中值算子的两个缺点:分解完备性差和IMFs中存在的毛刺现象. 展开更多
关键词 模态分裂 中值算子 互补白噪声 互补集合经验模式分解
在线阅读 下载PDF
基于CEEMD-MPE与SDAE的局部放电模式识别 被引量:2
7
作者 蒋伟 赵显阳 +3 位作者 樊汝森 徐鹏 沈道义 杨俊杰 《计算机应用与软件》 北大核心 2024年第8期175-181,195,共8页
针对变压器局部放电故障信息提取困难以及局部放电类型识别准确率低等问题,提出一种基于CEEMD-MPE与SDAE相结合的局部放电模式识别算法。对局部放电原始信号进行CEEMD分解,得到多个固有模态分量(IMF),根据相关系数筛选出系数最大的IMF... 针对变压器局部放电故障信息提取困难以及局部放电类型识别准确率低等问题,提出一种基于CEEMD-MPE与SDAE相结合的局部放电模式识别算法。对局部放电原始信号进行CEEMD分解,得到多个固有模态分量(IMF),根据相关系数筛选出系数最大的IMF作为最优分量,计算其不同尺度下的排列熵值;将有效排列熵值作为特征数据集输入到SDAE中进行无监督学习训练;利用Softmax分类器输出放电类型。实验结果表明,该算法识别精准率为98%,召回率为96.67%,F1得分为97.17%,能够快速、准确地识别局部放电类型。 展开更多
关键词 互补集合经验模态分解 多尺度排列熵 栈式降噪自编码 局部放电 特征提取 模式识别
在线阅读 下载PDF
改进的HHT变换在光纤振动模式识别中的应用 被引量:7
8
作者 王艳歌 程丹 刘继红 《现代电子技术》 北大核心 2019年第9期22-25,共4页
针对双马赫-曾德尔(M-Z)干涉型光纤振动传感系统输出信号非线性、非平稳特点,提出基于互补总体经验模态分解(CEEMD)的希尔伯特-黄变换(HHT)模式识别算法。该算法采用CEEMD将振动信号分解成多个本征模态函数(IMF),利用各阶IMF的归一化自... 针对双马赫-曾德尔(M-Z)干涉型光纤振动传感系统输出信号非线性、非平稳特点,提出基于互补总体经验模态分解(CEEMD)的希尔伯特-黄变换(HHT)模式识别算法。该算法采用CEEMD将振动信号分解成多个本征模态函数(IMF),利用各阶IMF的归一化自相关函数筛选出噪声分量进行中值滤波;然后对各阶IMF分量做Hilbert变换,基于Hilbert边际能量谱构造特征向量;最后利用概率神经网络(PNN)实现振动信号的模式识别。对四种典型光纤振动信号的实验验证表明,算法的平均正确识别率最低可达85%。 展开更多
关键词 HHT应用 光纤振动传感技术 模式识别 双马赫-曾德尔干涉仪 互补总体经验模态分解 信号分解 信号消噪 信号特征提取
在线阅读 下载PDF
基于CEEMD能量熵特征提取和VNWOA-LSSVM的风力机轴承故障诊断方法研究 被引量:11
9
作者 万晓静 孙文磊 陈坤 《机电工程》 CAS 北大核心 2020年第10期1186-1191,共6页
针对极端复杂工况下风力发电机组轴承故障诊断问题,对风力机运行状态监测中常用的故障诊断方法进行了研究,提出了一种基于互补总体经验模式分解能量熵的故障特征提取和改进的鲸鱼算法来优化最小二乘支持向量机的风力机轴承故障诊断方法... 针对极端复杂工况下风力发电机组轴承故障诊断问题,对风力机运行状态监测中常用的故障诊断方法进行了研究,提出了一种基于互补总体经验模式分解能量熵的故障特征提取和改进的鲸鱼算法来优化最小二乘支持向量机的风力机轴承故障诊断方法;通过互补总体经验模式分解,降低了噪声对微弱故障信号的干扰,提取了各分量的能量熵构建故障特征集合,作为诊断模型的输入;利用冯诺依曼拓扑结构的特性,克服了鲸鱼算法中收敛慢、寻优精度低的问题,构建了改进的鲸鱼算法优化最小二乘支持向量机的诊断模型分类器,实现了对不同故障类型特征参数的准确分类;最后利用试验数据集进行了测试。研究结果表明:所提出的方法计算速度快、泛化能力强、分类正确率高,其诊断结果优于基于鲸鱼算法优化的最小二乘支持向量机,远优于传统的最小二乘支持向量机算法。 展开更多
关键词 风力机轴承 互补总体经验模式分解 能量熵 冯诺依曼拓扑结构优化鲸鱼算法 最小二乘支持向量机
在线阅读 下载PDF
基于CEEMD的心音信号小波包去噪算法研究 被引量:29
10
作者 董利超 郭兴明 郑伊能 《振动与冲击》 EI CSCD 北大核心 2019年第9期192-198,222,共8页
针对传统心音去噪方法易将其部分高频有用信息作为噪声滤除而造成滤波后的心音信号失真及信息丢失的问题,提出了一种基于互补总体经验模态分解(CEEMD)的小波包变换去噪算法。首先通过互补总体经验模态分解将心音信号分解为从高频到低频... 针对传统心音去噪方法易将其部分高频有用信息作为噪声滤除而造成滤波后的心音信号失真及信息丢失的问题,提出了一种基于互补总体经验模态分解(CEEMD)的小波包变换去噪算法。首先通过互补总体经验模态分解将心音信号分解为从高频到低频的不同固有模态函数分量(IMFs),并利用自相关函数客观界定信号的模态分量范围;然后对噪声主导模态分量和混叠模态分量采用小波包变换进行滤波提取有用信息后,与剩余固有模态分量进行重构得到去噪后的信号。实验结果表明,改进的算法不仅可以去除心音中的噪声成分,明显改善心音信号的信噪比和均方根误差,而且能够有效保留信号的高频有用信息,且在不同噪声水平下的去噪性能均优于传统算法,鲁棒性较好。 展开更多
关键词 心音 互补总体经验模式分解 自相关函数 小波包 去噪
在线阅读 下载PDF
基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断 被引量:49
11
作者 孙曙光 于晗 +2 位作者 杜太行 王景芹 赵黎媛 《电工技术学报》 EI CSCD 北大核心 2017年第7期20-30,共11页
为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断... 为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断方法。该方法首先将振动信号通过改进的小波包阈值去噪算法处理;其次采用CEEMD提取若干个反映断路器状态信息的固有模态函数(IMF)分量,依据各IMF分量的能量分布特点,选择其中前7阶进行处理,计算其样本熵形成有效的特征样本;最后通过计算不同故障类型的样本间欧氏距离来定量评价类间样本平均距离,建立基于RVM的二叉树多分类器,诊断得出万能式断路器故障类型。基于所设计的分合闸典型故障模型进行实验。与其他方法的对比实验表明,所提方法可利用相对较少的故障数据样本实现对万能式断路器故障类型的识别并具有较高的识别率;同时实验表明,辅以同一故障类型的样本间欧氏距离,可实现对分合闸故障中三相不同期故障严重程度的初步评估。 展开更多
关键词 万能式断路器 分合闸故障诊断 振动信号 互补总体平均经验模态分解 样本熵相关向量机
在线阅读 下载PDF
基于多特征融合与改进QPSO-RVM的万能式断路器故障振声诊断方法 被引量:26
12
作者 孙曙光 于晗 +2 位作者 杜太行 王景芹 赵黎媛 《电工技术学报》 EI CSCD 北大核心 2017年第19期107-117,共11页
为可靠地进行万能式断路器机械故障诊断,在基于振动信号故障诊断的基础上,提出了一种多特征融合与改进量子粒子群(QPSO)优化的相关向量机(RVM)相结合的万能式断路器分合闸故障振声诊断方法。首先,对振声信号进行小波包软硬阈值结合去噪... 为可靠地进行万能式断路器机械故障诊断,在基于振动信号故障诊断的基础上,提出了一种多特征融合与改进量子粒子群(QPSO)优化的相关向量机(RVM)相结合的万能式断路器分合闸故障振声诊断方法。首先,对振声信号进行小波包软硬阈值结合去噪预处理,并利用互补总体经验模态分解算法对处理后的振声信号进行分解,提取固有模态函数能量系数、样本熵、功率谱熵,并组成多特征参数;然后,通过组合核函数核主元分析对多特征参数降维,并将其特征融合组成特征向量作为RVM的输入,解决单一特征识别断路器分合闸故障的低准确率和低稳定性;最后,利用改进QPSO优化分类模型参数,建立基于RVM的次序二叉树模型对断路器故障进行辨识。实验结果表明,该方法能有效提升不同故障状态下诊断结果的可靠性。 展开更多
关键词 万能式断路器 故障诊断 振声特征融合 互补总体经验模态分解 改进量子粒子群相关向量机
在线阅读 下载PDF
基于快速谱峭度图的EEMD内禀模态分量选取方法 被引量:20
13
作者 蒋超 刘树林 +1 位作者 姜锐红 王波 《振动.测试与诊断》 EI CSCD 北大核心 2015年第6期1173-1178,1206,共6页
针对在总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的多个内禀模态分量(intrinsic mode function,简称IMF)中,如何选取出反应故障特征的敏感IMF的问题,提出一种基于快速谱峭度图的敏感IMF选取方法。由EEMD... 针对在总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的多个内禀模态分量(intrinsic mode function,简称IMF)中,如何选取出反应故障特征的敏感IMF的问题,提出一种基于快速谱峭度图的敏感IMF选取方法。由EEMD分解获得的一组无模式混淆的IMF,计算原信号及各个IMF的快速谱峭度图,选择每个快速谱峭度图中谱峭度最大值所处的频带作为参考频带,比较各个IMF的参考频带与原信号谱峭度最大值所处频带之间的从属关系,筛选出反应故障特征的敏感IMF,为后续故障诊断提供特征信息。将该方法应用于模拟仿真信号及滚动轴承滚动体故障信号,验证了方法的有效性。 展开更多
关键词 总体平均经验模式分解 快速谱峭度图 冲击信号 故障诊断
在线阅读 下载PDF
基于EEMD样本熵和GK模糊聚类的机械故障识别 被引量:31
14
作者 王书涛 李亮 +1 位作者 张淑清 孙国秀 《中国机械工程》 EI CAS CSCD 北大核心 2013年第22期3036-3040,3044,共6页
针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态... 针对目前各种机械故障诊断方法的局限性,提出了基于总体平均经验模式分解(EEMD)样本熵和GK模糊聚类的故障特征提取和分类方法,建立了一种机械故障准确识别的有效途径。首先,对机械振动信号进行EEMD分解,得到若干不同时间尺度的固有模态函数(IMF)分量。其次,通过相关性分析和能量相结合的准则对IMF分量进行筛选,并将筛选出的IMF分量的样本熵组成故障特征向量。最后,将构造的特征向量输入到GK模糊聚类分类器中进行聚类识别。实验及工程实例证明了该方法的有效性和优越性。 展开更多
关键词 总体平均经验模式分解(EEMD) 样本熵 GK模糊聚类 机械故障识别
在线阅读 下载PDF
基于CEEMD-WPT的滚动轴承特征提取算法 被引量:12
15
作者 王丽华 陶润喆 +2 位作者 张永宏 赵晓平 谢阳阳 《振动.测试与诊断》 EI CSCD 北大核心 2017年第1期181-188,共8页
为实现对滚动轴承振动信号中特征频率成分的精确提取,提出了将互补总体平均经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)与小波包变换(wavelet package transform,简称WPT)相结合即CEMMD-WPT特征信号... 为实现对滚动轴承振动信号中特征频率成分的精确提取,提出了将互补总体平均经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)与小波包变换(wavelet package transform,简称WPT)相结合即CEMMD-WPT特征信号提取算法。两种方法的结合既有效解决了CEEMD分解后依然存在的模态混叠问题,又消除了进行WPT处理后产生虚假频率分量、频率混淆现象的影响。通过仿真试验验证了该方法的有效性,并应用于实际,取得很好的结果。 展开更多
关键词 滚动轴承 小波包变换 互补总体平均经验模态分解 特征提取
在线阅读 下载PDF
奇异值熵和支持向量机的齿轮故障诊断 被引量:24
16
作者 张超 陈建军 +1 位作者 杨立东 徐亚兰 《振动.测试与诊断》 EI CSCD 北大核心 2011年第5期600-604,665,共5页
提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法。首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征... 提出了一种基于总体平均经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵和支持向量机的齿轮故障诊断方法。首先,通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模式分量,将得到的若干个本征模式分量自动形成初始特征向量矩阵;然后,对该矩阵进行奇异值分解,提取其奇异值作为故障特征向量,并对其进行归一化,求得奇异值熵,根据奇异值熵值大小可以判断齿轮的故障类型;最后,将奇异值故障特征向量作为支持向量机的输入,判断齿轮的工作状态和故障类型。试验结果表明,即使在小样本情况下,基于EEMD奇异值分解和支持向量机的故障诊断方法仍能有效地识别齿轮的工作状态和故障类型。 展开更多
关键词 总体平均经验模态分解 奇异值熵 支持向量机 本征模式分量 故障诊断
在线阅读 下载PDF
基于EEMD模糊熵的PCA-GG滚动轴承聚类故障诊断 被引量:28
17
作者 许凡 方彦军 张荣 《计算机集成制造系统》 EI CSCD 北大核心 2016年第11期2631-2642,共12页
针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的... 针对滚动轴承故障诊断中振动信号的熵特征向量维数高的问题,提出一种基于总体平均经验模态分解、模糊熵、主成分分析、GG(Gath-Geva)聚类算法相结合的滚动轴承聚类故障诊断法。采用经验模式分解与总体平均经验模式分解分别对滚动轴承的原始信号进行分解,得到若干个固有模式分量,并使用样本熵与模糊熵计算其熵值。通过主成分分析法对熵特征向量进行可视化降维,并作为模糊C均值、GK(GustafsonKessel)与GG聚类算法的输入,实现对滚动轴承的故障诊断。利用分类系数和平均模糊熵对上述聚类结果进行评价与对比。通过实验表明,所设计的模型能对熵特征向量进行可视化降维,且其故障识别聚类效果优于其他方法。 展开更多
关键词 滚动轴承 故障诊断 模糊熵 总体平均经验模式分解 Gath-Geva聚类
在线阅读 下载PDF
EEMD的非平稳信号降噪及其故障诊断应用 被引量:27
18
作者 吕建新 吴虎胜 田杰 《计算机工程与应用》 CSCD 北大核心 2011年第28期223-227,共5页
针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于... 针对往复机械振动信号的瞬时非线性、非平稳特性,提出一种基于总体平均经验模式分解(Ensemble Empirical Mode Decomposition,EEMD)与过零率分析相结合的自适应降噪方法,并与能量矩、支持向量机(Support Vector Machine,SVM)结合应用于故障诊断。利用EEMD对非平稳振动信号进行自适应的分解,有效抑制经典经验模式分解的可能出现的模式混叠现象,再以所得的各固有模式分量(Intrinsic Mode Function,IMF)的过零率作为噪声评判准则,重构过零率阈值范围内的非噪声分量以实现信号降噪。另外,计算非噪声分量的能量矩作为故障特征提输入二叉树支持向量机实现的柴油机故障诊断验证了该方法有效性。 展开更多
关键词 往复机械 信号降噪 特征提取 过零率分析 总体平均经验模式分解 能量矩
在线阅读 下载PDF
一种基于EEMD-SVD和FCM的轴承故障诊断方法 被引量:10
19
作者 张立国 康乐 +1 位作者 金梅 李盼 《计量学报》 CSCD 北大核心 2016年第1期67-70,共4页
提出了一种基于总体平均经验模式分解(EEMD)和奇异值分解(SVD)的模糊C均值聚类(FCM)相结合的轴承故障诊断方法。首先对轴承信号进行EEMD分解,得到若干个平稳的本征模函数(IMF),再通过相关性分析筛选包含主要信息的前几个分量... 提出了一种基于总体平均经验模式分解(EEMD)和奇异值分解(SVD)的模糊C均值聚类(FCM)相结合的轴承故障诊断方法。首先对轴承信号进行EEMD分解,得到若干个平稳的本征模函数(IMF),再通过相关性分析筛选包含主要信息的前几个分量进行奇异值分解,然后将得到的奇异值矩阵作为特征向量,通过FCM模糊聚类进行识别。实验结果表明,此方法可有效地对轴承故障类型进行识别。 展开更多
关键词 计量学 总体平均经验模式分解 奇异值分解 模糊C均值聚类 轴承故障诊断
在线阅读 下载PDF
改进的自适应EEMD方法及其应用 被引量:11
20
作者 何星 王宏力 +1 位作者 姜伟 王林 《系统仿真学报》 CAS CSCD 北大核心 2014年第4期869-873,共5页
针对目前总体经验模式分解(EEMD)方法中两个参数依靠人工选择难以准确获取的问题,提出了一种可自适应确定二者取值的改进EEMD方法。首先通过提取信号中的高频成分来确定加入白噪声的幅值,再根据减小白噪声影响的统计规律得到总体平均次... 针对目前总体经验模式分解(EEMD)方法中两个参数依靠人工选择难以准确获取的问题,提出了一种可自适应确定二者取值的改进EEMD方法。首先通过提取信号中的高频成分来确定加入白噪声的幅值,再根据减小白噪声影响的统计规律得到总体平均次数。同时,为提高分解效率及降低白噪声影响,在EEMD过程中引入有限带宽高斯白噪声消除模态混叠,实现对信号的快速准确分解。信号仿真试验表明改进EEMD方法可以得到比EMD和原始EEMD更加高效的分解结果。最后将其应用于混合信号输入的模拟电路故障特征提取中,以输出响应EEMD分解得到的IMF能量作为特征进行不同故障的分类,仿真结果表明该方法提取的电路各状态特征可作为故障识别和诊断的依据。 展开更多
关键词 总体经验模式分解 自适应 白噪声 模拟电路 故障特征
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部