期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
互补集合经验模式分解与奇异值能量谱在风电齿轮故障识别中的应用 被引量:6
1
作者 张文斌 江洁 +3 位作者 俞利宾 郭德伟 闵洁 普亚松 《太阳能学报》 EI CAS CSCD 北大核心 2020年第2期137-143,共7页
针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分... 针对风电机组齿轮系统故障模式的有效识别问题,提出一种互补集合经验模式分解(CEEMD)与奇异值能量谱相结合的故障识别方法。利用CEEMD将齿轮非平稳信号分解为有限个平稳的本征模态函数,并将其组成初始特征向量矩阵,对矩阵进行奇异值分解并求出风电齿轮不同工况下的奇异值能量谱分布,以奇异值能量谱为元素构造特征向量,通过计算不同工况振动信号的灰色关联度来判断齿轮的故障类型。实例表明,该方法能有效应用于风电机组齿轮系统的故障诊断。 展开更多
关键词 故障分析 齿轮 信号处理 互补集合经验模式分解 奇异值能量谱
在线阅读 下载PDF
中值互补集合经验模态分解 被引量:5
2
作者 刘淞华 何冰冰 +3 位作者 郎恂 陈启明 张榆锋 苏宏业 《自动化学报》 EI CAS CSCD 北大核心 2023年第12期2544-2556,共13页
针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complemen... 针对经验模态分解(Empirical mode decomposition,EMD)系列方法存在的模态分裂(Mode splitting,MS)问题,提出中值互补集合经验模态分解(Median complementary ensemble EMD,MCEEMD)算法.通过概率模型量化互补集合经验模态分解(Complementary ensemble EMD,CEEMD)的MS问题,证明了使用中值算子替代算术平均算子对抑制MS的有效性.为了兼具抑制MS和残留噪声的性能,MCEEMD算法首次在集合过程中结合了中值和平均算子.具体地,所提方法首先添加N对互补的白噪声至原信号中,并经过EMD分解得到2N组固有模态函数(Intrinsic mode functions,IMFs),然后分别对其中互补相关的IMFs两两取平均得到N组IMFs,最后使用中值算子处理上述N组IMFs得到输出结果.对仿真信号与两个真实案例的分析结果表明,本文提出的MCEEMD方法不仅有效抑制了CEEMD的MS问题,而且避免了单一使用中值算子的两个缺点:分解完备性差和IMFs中存在的毛刺现象. 展开更多
关键词 模态分裂 中值算子 互补白噪声 互补集合经验模式分解
在线阅读 下载PDF
爆炸冲击波集合分解排列熵时变峰值降噪算法
3
作者 杜桂云 崔春生 +1 位作者 杨志飞 刘双峰 《探测与控制学报》 CSCD 北大核心 2024年第1期90-95,113,共7页
针对实测的爆炸冲击波信号中含有大量的噪声信号,严重影响冲击波超压峰值与正压时间的判读以及比冲量的计算等问题,提出了基于完全集合经验模式分解(CEEMDAN)与排列熵(MPE)的时变窗长时频峰值滤波的爆炸冲击波降噪算法,通过构造不同比... 针对实测的爆炸冲击波信号中含有大量的噪声信号,严重影响冲击波超压峰值与正压时间的判读以及比冲量的计算等问题,提出了基于完全集合经验模式分解(CEEMDAN)与排列熵(MPE)的时变窗长时频峰值滤波的爆炸冲击波降噪算法,通过构造不同比例距离下的含噪冲击波信号模型和实测数据来进行研究与验证。原始爆炸冲击波数据经CEEMDAN分解为若干个本征模态分量(IMFs);并以IMFs的MPE值作为分类指标,将IMFs分量划分为需滤波和存留两个类别,对含噪模型与实测数据进行降噪处理实验,将降噪处理后的IMFs分量和剩余的IMFs重构。试验结果表明,与贝塞尔低通数字滤波器、CEEMDAN降噪算法相比,该方法能够去除信号中含有的高频噪声,获得较好的降噪指标;同时尽可能地保留了信号中的尖峰与突变信息,是比较理想的爆炸冲击波信号降噪算法。 展开更多
关键词 爆炸冲击波 完全集合经验模式分解 排列熵 降噪
在线阅读 下载PDF
基于CEEMD-MPE与SDAE的局部放电模式识别 被引量:2
4
作者 蒋伟 赵显阳 +3 位作者 樊汝森 徐鹏 沈道义 杨俊杰 《计算机应用与软件》 北大核心 2024年第8期175-181,195,共8页
针对变压器局部放电故障信息提取困难以及局部放电类型识别准确率低等问题,提出一种基于CEEMD-MPE与SDAE相结合的局部放电模式识别算法。对局部放电原始信号进行CEEMD分解,得到多个固有模态分量(IMF),根据相关系数筛选出系数最大的IMF... 针对变压器局部放电故障信息提取困难以及局部放电类型识别准确率低等问题,提出一种基于CEEMD-MPE与SDAE相结合的局部放电模式识别算法。对局部放电原始信号进行CEEMD分解,得到多个固有模态分量(IMF),根据相关系数筛选出系数最大的IMF作为最优分量,计算其不同尺度下的排列熵值;将有效排列熵值作为特征数据集输入到SDAE中进行无监督学习训练;利用Softmax分类器输出放电类型。实验结果表明,该算法识别精准率为98%,召回率为96.67%,F1得分为97.17%,能够快速、准确地识别局部放电类型。 展开更多
关键词 互补集合经验模态分解 多尺度排列熵 栈式降噪自编码 局部放电 特征提取 模式识别
在线阅读 下载PDF
基于ICEEMDAN和MC-CNN的矿山声发射信号识别分类方法 被引量:5
5
作者 谢学斌 王小平 刘涛 《中国安全生产科学技术》 CAS CSCD 北大核心 2022年第2期113-118,共6页
为精准识别地下矿山声发射事件,采用基于改进的完全集合经验模态分解模型(ICEEMDAN)和多通道卷积神经网络(MC-CNN)模型对声发射信号进行处理后得到分量图,根据各通道输入分量峭度值赋予不同权重,并利用卷积神经网络对输入数据进行训练,... 为精准识别地下矿山声发射事件,采用基于改进的完全集合经验模态分解模型(ICEEMDAN)和多通道卷积神经网络(MC-CNN)模型对声发射信号进行处理后得到分量图,根据各通道输入分量峭度值赋予不同权重,并利用卷积神经网络对输入数据进行训练,最终采用五折交叉实验方法验证该分类识别方法的可行性及有效性。结果表明:基于ICEEMDAN和MC-CNN模型分类识别正确率为97.64%,与其他传统识别方法相比能精准有效地对地下矿山声发射信号进行识别分类,显著提高卷积神经网络的波形识别正确率。研究结果可为地下矿山声发射事件识别分类提供借鉴。 展开更多
关键词 声发射事件 模式识别 改进的完全集合经验模态分解 多通道卷积神经网络
在线阅读 下载PDF
基于双向门控循环单元的地表水氨氮预测 被引量:4
6
作者 任永琴 金柱成 +2 位作者 俞真元 王晓丽 彭士涛 《中国环境科学》 EI CAS CSCD 北大核心 2022年第2期672-679,共8页
为提高水环境中NH_(4)^(+)-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH_(4)^(+)-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神... 为提高水环境中NH_(4)^(+)-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH_(4)^(+)-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神经网络对各成份进行预测,将所有分解成份的预测结果相加即可获得最终预测结果.以2017年6月~2020年2月鄱阳湖的NH_(4)^(+)-N数据进行模型性能验证.结果表明,利用CCB模型在1d后的NH_(4)^(+)-N预测中平均绝对百分比误差为3.38%,在7d后的NH_(4)^(+)-N预测中平均绝对百分比误差为6.82%,在15d后的NH_(4)^(+)-N预测中平均绝对百分比误差为9.41%,优于本文中参与比较的其他模型.CCB模型在NH_(4)^(+)-N预测方面具有良好的预测性能. 展开更多
关键词 鄱阳湖 氨氮(NH_(4)^(+)-N) 互补完全集合经验模式分解(cceemdan) 双向门控循环单元(BiGRU)
在线阅读 下载PDF
基于ICEEMDAN-MSE的左室舒张功能障碍心音信号的识别研究 被引量:8
7
作者 杨洋 郭兴明 +1 位作者 郑伊能 王慧 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第1期274-281,共8页
左室舒张功能障碍(LVDD)加重会导致左室重构、室壁僵硬、顺应性降低,从而走向不可逆阶段并进展为射血分数保留型心力衰竭。为早期诊断LVDD,本文提出一种基于改进的自适应噪声完全集合经验模式分解(ICEEMDAN)多尺度样本熵(MSE)的心音特... 左室舒张功能障碍(LVDD)加重会导致左室重构、室壁僵硬、顺应性降低,从而走向不可逆阶段并进展为射血分数保留型心力衰竭。为早期诊断LVDD,本文提出一种基于改进的自适应噪声完全集合经验模式分解(ICEEMDAN)多尺度样本熵(MSE)的心音特征结合逻辑回归模型的无创检测方法。首先,采用改进的小波去噪方法对心音信号进行预处理。其次,通过ICEEMDAN方法将非平稳的心音信号分解为多个反映心音本体特征的平稳的固有模态函数(IMF),再利用互相关系数准则筛选IMF,并提取所筛选IMF的MSE,以构成特征向量作为分类器的输入。最后,通过与其他3种分类模型的性能比较,将逻辑回归应用于LVDD识别。结果表明,该方法能有效提取心音特征,其准确率为89.85%,灵敏度为92.17%,特异度为87.63%,证明了采用心音信号对LVDD进行早期诊断的有效性。 展开更多
关键词 左室舒张功能障碍 改进的自适应噪声完全集合经验模式分解 多尺度样本熵 逻辑回归 识别
在线阅读 下载PDF
基于改进HHT的矿山微震信号多尺度特征提取及分类研究 被引量:3
8
作者 王英乐 左宇军 +3 位作者 陈斌 林健云 郑禄璟 万入祯 《矿冶工程》 CAS CSCD 北大核心 2022年第6期7-12,共6页
针对矿山微震与爆破信号难以识别问题,提出基于改进Hilbert-Huang变换(HHT)的矿山微震信号识别方法。该方法引入互补集合经验模态分解(CEEMD)对HHT改进,信号被自适应分解后,计算IMF分量的偏度、峭度、Hilbert边际谱能量、Lempel-Ziv复... 针对矿山微震与爆破信号难以识别问题,提出基于改进Hilbert-Huang变换(HHT)的矿山微震信号识别方法。该方法引入互补集合经验模态分解(CEEMD)对HHT改进,信号被自适应分解后,计算IMF分量的偏度、峭度、Hilbert边际谱能量、Lempel-Ziv复杂度以及重构信号的分形盒维数,运用拉普拉斯得分(LS)对5种时频域特征参数降维,最后通过遗传算法(GA)优化的支持向量机(SVM)模型,实现微震信号的分类识别。经400组微震和爆破信号的实例分析验证,两类信号的5种特征参数均有较大差异,改进HHT法识别效果优于传统经验模态分解法(EMD)和局部均值分解法(LMD),且基于改进HHT和GA-SVM分类模型准确率达到95%,证实了此识别方法的准确性。 展开更多
关键词 微震信号 爆破信号 信号识别 模式识别 互补集合经验模态分解 HILBERT-HUANG变换 拉普拉斯得分
在线阅读 下载PDF
基于FastICA与ICEEMDAN的人脸视频心率检测 被引量:3
9
作者 赵明康 王镇 +2 位作者 齐晨成 王艺潇 张帅 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期508-512,共5页
现有的非接触式心率检测方法存在噪声干扰、准确率低等问题。针对这些问题,提出一种基于FastICA与改进的自适应噪声完全集合经验模态分解(ICEEMDAN)相结合的算法,采用人脸视频进行心率检测。用摄像头采集人脸视频,并从视频中提取R、G、... 现有的非接触式心率检测方法存在噪声干扰、准确率低等问题。针对这些问题,提出一种基于FastICA与改进的自适应噪声完全集合经验模态分解(ICEEMDAN)相结合的算法,采用人脸视频进行心率检测。用摄像头采集人脸视频,并从视频中提取R、G、B通道源信号,即皮肤颜色变化信号,分别求出RGB这3个颜色通道的像素平均值;然后利用FastICA对RGB这3组像素平均值进行解混,得到3组独立源信号,再用ICEEMDAN将其中一组独立源信号进行模态分解,并选取合适频段内的固有模式函数(IMF)估计心率的信号,最后用频谱分析计算得到心率。设计实验对8名人员进行了人脸视频检测,将检测结果与多参数监护仪进行对比分析。实验结果表明,该方法与多参数监护仪测量结果的平均误差与均方根误差均小于1 beat/min,因此基于FastICA与ICEEMDAN的人脸视频心率检测对人体心率检测具有良好的稳定性和准确性。 展开更多
关键词 人脸视频 非接触心率检测 光电容积脉搏波 快速独立成分分析(FastICA) 改进的自适应噪声完全集合经验模式分解(ICEEMDAN)
在线阅读 下载PDF
改进自适应CEEMD方法在心电信号去噪中的应用 被引量:13
10
作者 付林军 王凤随 刘正男 《电子测量与仪器学报》 CSCD 北大核心 2020年第4期50-57,共8页
针对传统经验模式分解(EMD)方法存在的模式混淆问题,以及总体平均经验模式分解(EEMD)不具备完备性和计算量太大的缺陷,提出一种改进的自适应互补集合经验模式分解(CEEMD)方法。该方法在分析加噪准则的基础上,引入峰值误差(PE)作为加噪... 针对传统经验模式分解(EMD)方法存在的模式混淆问题,以及总体平均经验模式分解(EEMD)不具备完备性和计算量太大的缺陷,提出一种改进的自适应互补集合经验模式分解(CEEMD)方法。该方法在分析加噪准则的基础上,引入峰值误差(PE)作为加噪评价指标,来自适应确定最佳加噪幅值;然后利用原始信号的幅值标准差以及加入噪声的幅值标准差的比值系数,对不同信号自适应获取总体平均次数;最后将该方法运用到由美国麻省理工学院建立的MIT-BIH心电数据库中,很好地实现了对目标信号的去噪。实验表明,所提方法的平均信噪比(SNR)达到了19.2497、均方根误差(RMSE)仅为0.0473,平均平滑度指标R只有0.0305。算法有效地去除了原始心电信号噪声,改善了信号的平滑度,提高了运算效率。 展开更多
关键词 心电信号 自适应 互补集合经验模式分解 信噪比
在线阅读 下载PDF
轴承振动信号的去趋势分析和故障特征提取方法研究 被引量:4
11
作者 田锐 《机械设计与制造》 北大核心 2018年第12期100-104,共5页
针对传统经验模式分解(EMD)确定含噪模式分量缺乏具体评价指标的问题,首先利用互补集合经验模式分解(CEEMD)将故障信号分解,然后利用去趋势波动分析(DFA)计算每一个模式分量对应的标度指数,有用分量和含噪分量通过标度指数的幅值阈值进... 针对传统经验模式分解(EMD)确定含噪模式分量缺乏具体评价指标的问题,首先利用互补集合经验模式分解(CEEMD)将故障信号分解,然后利用去趋势波动分析(DFA)计算每一个模式分量对应的标度指数,有用分量和含噪分量通过标度指数的幅值阈值进行区分,最后小波分析用于对识别出的高频含噪分量进行降噪处理,其目的是最大程度地保留高频模式分量中的故障信息,实现信号的自适应降噪。通过对轴承故障信号和数值仿真信号的分析结果表明:提出的方法能够更好地识别和提取轴承的故障特征。 展开更多
关键词 互补集合经验模式分解 去趋势波动分析 小波分析 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部