A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interaction...A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.展开更多
As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transportin...As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.展开更多
基金Projects(51605315,51478399)supported by the National Natural Science Foundation of ChinaProject(2013BAG20B00)supported by the National Key Technology R&D Program of ChinaProject(TPL1707)supported by the Open Project Program of the State Key Laboratory of Traction Power,China
文摘A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.
基金Project(50975290) supported by the National Natural Science Foundation of ChinaProject(2011QNZT057) supported by the Basic Operational Cost of Special Research Funding of Central Universities in ChinaProject(11JJ5028) supported by Hunan Provincial Natural Science Foundation,China
文摘As a solution to the breaking of pipeline under high axial force,carbon fiber composite pipe with low density and high intensity is applied to deep-sea mining transporting system.Based on the fact that the transporting pipe is under the forces of gravity,inner liquid,buoyancy as well as hydrodynamic force,geometric nonlinear finite element theory has been applied to analyzing the transporting system.Conclusions can be drawn as follows.Under the interaction of waves and currents,node forces FX and FZ acted by the transporting pipe on the mining vehicle are less than 2 kN,which indicates that waves and currents have little influence on the spatial shape of the transporting pipe and the mining vehicle movement.On the other hand,the horizontal force acting on the mining ship could be as large as 106 830 N,which has great influence on the mining system.