期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
云边协同大模型块粒度重训方法
1
作者 张青龙 韩锐 刘驰 《电子学报》 北大核心 2025年第2期287-300,共14页
边缘侧大模型外部环境的不确定性(如路边摄像头画面中天气、光照、物体密度的变化),导致其输入数据分布持续改变,因此需进行重训以维持高精度.受限于设备可用资源和重训窗口,现有技术仅能训练固定压缩模型,其有限的泛化能力导致模型精... 边缘侧大模型外部环境的不确定性(如路边摄像头画面中天气、光照、物体密度的变化),导致其输入数据分布持续改变,因此需进行重训以维持高精度.受限于设备可用资源和重训窗口,现有技术仅能训练固定压缩模型,其有限的泛化能力导致模型精度显著降低.本文提出云边协同大模型块粒度重训方法,引入模型重训缩放定律评估不同块对边缘侧当前数据的精度贡献,以此为依据生成有限资源下最优重训方案,将云平台大模型中精度最相关部分动态转换为边缘侧可重训小模型,构建大小模型协同训练系统.真实云边平台上对比实验表明,本文方法可以在相同资源消耗下提升大模型重训精度81.24%,并支持最大至330亿参数大模型重训. 展开更多
关键词 模型 边缘侧动态环境 模型重训 缩放定律 云边大小模型协同训练
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部