期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
电力负荷预估的神经网络正则化及其应用 被引量:2
1
作者 邓宏贵 罗安 曹建 《小型微型计算机系统》 CSCD 北大核心 2006年第8期1495-1497,共3页
电力负荷预估是目前世界上公认的解决电力资源合理配置的有效措施.而负荷时序预测是实现智能电力系统的关键技术,是一个非常复杂的问题,该问题的解决要求应用大型神经网络.对于庞大的网络,正则化非常重要,需要特别关注,才能实现网络的... 电力负荷预估是目前世界上公认的解决电力资源合理配置的有效措施.而负荷时序预测是实现智能电力系统的关键技术,是一个非常复杂的问题,该问题的解决要求应用大型神经网络.对于庞大的网络,正则化非常重要,需要特别关注,才能实现网络的实用性.为了解决这个问题,我们提出了基于OBD模式的神经网络正则化算法,算法的核心是海森(Hessian)矩阵获取与迭代;讨论了基于该模型的电力负荷预估数值结果.这些结论表明:本文提出的正则化方法的应用有效改善了电力负荷预估的精度. 展开更多
关键词 电力负荷预估 实时预测 正则化 二阶灵敏度算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部