期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于二阶池化网络的鲁棒视觉跟踪算法 被引量:4
1
作者 蒲磊 冯新喜 +1 位作者 侯志强 余旺盛 《电子学报》 EI CAS CSCD 北大核心 2020年第8期1472-1478,共7页
针对低分辨率、遮挡以及相似物体干扰等复杂场景下目标易丢失的问题,本文提出了基于二阶池化网络的视觉跟踪算法.已有的方法大多采用一阶池化网络,使得对低分辨目标和相似目标间的区分性不足.对此,本文首先在VGG16网络结构的基础上,将... 针对低分辨率、遮挡以及相似物体干扰等复杂场景下目标易丢失的问题,本文提出了基于二阶池化网络的视觉跟踪算法.已有的方法大多采用一阶池化网络,使得对低分辨目标和相似目标间的区分性不足.对此,本文首先在VGG16网络结构的基础上,将网络最后的一阶池化层替换为二阶协方差池化层,接着在ImageNet和CUB200-2011数据集上对网络进行重新训练.在跟踪阶段,为了减少运算负担,仅提取预训练网络的第四层卷积特征作为目标的外观表征.最后将提取的特征与已有的相关滤波算法进行结合.实验结果表明,本文算法在跟踪精度和成功率上均取得了优异的性能表现. 展开更多
关键词 视觉跟踪 二阶池化网络 深度特征 相关滤波
在线阅读 下载PDF
基于二阶池化特征融合的孪生网络目标跟踪算法 被引量:1
2
作者 陈茂林 侯志强 +2 位作者 余旺盛 马素刚 蒲磊 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2022年第3期68-74,共7页
为提升基于孪生网络目标跟踪算法的特征表达能力,获得更好的跟踪性能,提出了一种轻量级的基于二阶池化特征融合的孪生网络目标跟踪算法。首先,使用孪生网络结构获取目标的深度特征;然后,在孪生网络结构的末端并行添加二阶池化网络和轻... 为提升基于孪生网络目标跟踪算法的特征表达能力,获得更好的跟踪性能,提出了一种轻量级的基于二阶池化特征融合的孪生网络目标跟踪算法。首先,使用孪生网络结构获取目标的深度特征;然后,在孪生网络结构的末端并行添加二阶池化网络和轻量级通道注意力,以获取目标的二阶池化特征和通道注意力特征;最后,将目标的深度特征、二阶池化特征和通道注意力特征进行融合,使用融合后的特征进行互相关操作,得到地响应图能很好地区分目标和背景,提高跟踪模型的判别能力,改善目标定位的精度,从而提升跟踪性能。所提算法使用Got-10k数据集进行端到端的训练,并在数据集OTB100和VOT2018上进行验证。实验结果表明,所提算法与基准算法相比,跟踪性能取得了显著提升:在OTB100数据集上,精确度和成功率分别提高了7.5%和5.2%;在VOT2018数据集上,预期平均重叠率(EAO)提高了4.3%。 展开更多
关键词 目标跟踪 孪生网络 二阶池化网络 通道注意力
在线阅读 下载PDF
基于二阶注意力的Siamese网络视觉跟踪算法
3
作者 侯志强 陈茂林 +3 位作者 马靖媛 郭凡 余旺盛 马素刚 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第3期739-747,共9页
为提升基于Siamese网络视觉跟踪算法的特征表达能力和判别能力,以获得更好的跟踪性能,提出了一种轻量级的基于二阶注意力的Siamese网络视觉跟踪算法。使用轻量级VGG-Net作为Siamese网络的主干,获取目标的深度特征;在Siamese网络的末端... 为提升基于Siamese网络视觉跟踪算法的特征表达能力和判别能力,以获得更好的跟踪性能,提出了一种轻量级的基于二阶注意力的Siamese网络视觉跟踪算法。使用轻量级VGG-Net作为Siamese网络的主干,获取目标的深度特征;在Siamese网络的末端并行使用所提残差二阶池化网络和二阶空间注意力网络,获取具有通道相关性的二阶注意力特征和具有空间相关性的二阶注意力特征;使用残差二阶通道注意力特征和二阶空间注意力特征,通过双分支响应策略实现视觉跟踪。利用GOT-10k数据集对所提算法进行端到端的训练,并在OTB100和VOT2018数据集上进行验证。实验结果表明:所提算法的跟踪性能取得了显著提升,与基准算法SiamFC相比,在OTB100数据集上,精度和成功率分别提高了0.100和0.096,在VOT2018数据集上,预期平均重叠率(EAO)提高了0.077,跟踪速度达到了48帧/s。 展开更多
关键词 Siamese网络 视觉跟踪 残差二阶池化网络 二阶空间注意力网络 双分支响应策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部