期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于二阶时序差分误差的双网络DQN算法 被引量:5
1
作者 陈建平 周鑫 +3 位作者 傅启明 高振 付保川 吴宏杰 《计算机工程》 CAS CSCD 北大核心 2020年第5期78-85,93,共9页
针对深度Q网络(DQN)算法因过估计导致收敛稳定性差的问题,在传统时序差分(TD)的基础上提出N阶TD误差的概念,设计基于二阶TD误差的双网络DQN算法。构造基于二阶TD误差的值函数更新公式,同时结合DQN算法建立双网络模型,得到两个同构的值... 针对深度Q网络(DQN)算法因过估计导致收敛稳定性差的问题,在传统时序差分(TD)的基础上提出N阶TD误差的概念,设计基于二阶TD误差的双网络DQN算法。构造基于二阶TD误差的值函数更新公式,同时结合DQN算法建立双网络模型,得到两个同构的值函数网络分别用于表示先后两轮的值函数,协同更新网络参数,以提高DQN算法中值函数估计的稳定性。基于Open AI Gym平台的实验结果表明,在解决Mountain Car和Cart Pole问题方面,该算法较经典DQN算法具有更好的收敛稳定性。 展开更多
关键词 深度强化学习 马尔科夫决策过程 深度Q网络 二阶时序差分误差 梯度下降
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部