期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融入概率矩阵分解模型的改进二部图推荐算法
1
作者 甘沛露 宋一豪 +1 位作者 朱晓雄 周支立 《运筹与管理》 北大核心 2025年第1期1-7,I0001-I0002,共7页
针对历史数据稀疏和分布不均衡影响二部图算法推荐效果的问题,一方面通过带约束的概率矩阵分解模型预测项目评分,设置权重对初始评分数据矩阵进行填充以扩充数据;另一方面,在传统二部图推荐算法的研究基础上,通过修正用户评分标准、融... 针对历史数据稀疏和分布不均衡影响二部图算法推荐效果的问题,一方面通过带约束的概率矩阵分解模型预测项目评分,设置权重对初始评分数据矩阵进行填充以扩充数据;另一方面,在传统二部图推荐算法的研究基础上,通过修正用户评分标准、融入时间效应因素、扩充用户评分信息,从而改进资源初始配置和分配方式以充分利用历史数据,实现对二部图推荐算法进行改进。最后,使用推荐算法领域常用的MovieLens数据集采用五折交叉验证的方式进行实验,并与传统二部图推荐算法进行比较。实验结果表明,每一步改进都提高了二部图算法的推荐效果,并且二部图算法与概率矩阵分解模型结合后,算法的推荐效果有显著提升。 展开更多
关键词 二部图推荐算法 数据稀疏性 概率矩阵分解 矩阵填充
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部