期刊文献+
共找到6,842篇文章
< 1 2 250 >
每页显示 20 50 100
二进制量子粒子群优化算法及其在化工过程故障诊断中的应用 被引量:1
1
作者 王灵 俞金寿 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第5期692-696,共5页
针对实际化工生产过程中故障数据缺乏,采用适合小样本问题的支持向量机(SVM)对化工过程稳态故障进行诊断。为了保证在线故障诊断的实时性,消除高维监控数据以及系统噪声对故障诊断的干扰,提出了一种新的基于二进制量子粒子群优化(BQPSO... 针对实际化工生产过程中故障数据缺乏,采用适合小样本问题的支持向量机(SVM)对化工过程稳态故障进行诊断。为了保证在线故障诊断的实时性,消除高维监控数据以及系统噪声对故障诊断的干扰,提出了一种新的基于二进制量子粒子群优化(BQPSO)算法和SVM的故障特征选择方法。仿真实验表明:BQPSO算法具有良好的全局搜索能力,能够快速、准确地搜索到故障特征变量;而基于特征选择的SVM故障诊断方法能可靠地实现对复杂化工过程的在线故障诊断。 展开更多
关键词 故障诊断 特征选择 二进制量子粒子 量子算法 支持向量机
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
2
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于改进二进制粒子群算法优化DBN的轴承故障诊断 被引量:3
3
作者 陈剑 黄志 +2 位作者 徐庭亮 孙太华 李雪原 《组合机床与自动化加工技术》 北大核心 2024年第1期168-173,共6页
针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN... 针对滚动轴承故障振动信号非平稳性的特点,对二进制粒子群优化算法(binary particles swarm optimization,BPSO)和深度信念网络(deep belief network,DBN)进行研究,提出一种基于局部均值分解(local mean decomposition,LMD)和IBPSO-DBN的轴承故障诊断方法。提出用加权惯性权重改进BPSO迭代过程中的固定权重,再用改进BPSO优化DBN的隐含层神经元个数和学习率。该方法先对信号进行LMD,提取出各PF分量的散布熵和时域指标,并构建特征矩阵,然后把特征矩阵输入改进BPSO-DBN模型中训练,实现滚动轴承故障诊断和分类。采用试验轴承数据做验证并与其他诊断方法对比,结果表明,基于LMD和BPSO-DBN的滚动轴承故障诊断方法具有较好的故障识别率。 展开更多
关键词 局部均值分解 二进制粒子优化算法 深度置信网络 滚动轴承故障诊断
在线阅读 下载PDF
快速综合学习粒子群优化算法 被引量:3
4
作者 杨帆 乌景秀 +2 位作者 范子武 李子祥 朱沈涛 《水利水电技术(中英文)》 北大核心 2025年第2期30-44,共15页
【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast C... 【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast Comprehensive Learning Particle Swarm Optimization,FCLPSO)。【方法】FCLPSO算法引入粒子学习概率、个体影响概率、群体影响概率三个属性,表征每个粒子个体“与生俱来”的不同学习能力,同时新增强化学习、粒子重生等策略,提升算法收敛速度以及监测并跳出“伪收敛”状态。选用14个标准测试函数以及6种常用粒子群变体算法开展FCLPSO算法性能分析。【结果】结果显示:在收敛性方面,FCLPSO算法平均排名为1.86,排名第一次数为7次、排名第二的次数为2次、排名最后次数为0,最终综合排名第一;在鲁棒性方面,FCLPSO算法成功率排名第一,平均值为94.3%,14个测试函数中最低成功率为73.3%;达到阈值所需适应度评价次数最少,平均值40817,较其他算法评价次数少一半。【结论】结果表明:FCLPSO算法在收敛精度、收敛速度和鲁棒性方面排名综合第一,对复杂多峰问题求解更具优势,可为工程应用中复杂优化问题求解提供重要手段。 展开更多
关键词 粒子优化算法 强化学习 粒子属性 粒子重生 过早收敛 影响因素 人工智能 全局搜索
在线阅读 下载PDF
基于粒子群优化算法的东构造结滑坡清单建立与侵蚀速率估算 被引量:1
5
作者 耿豪鹏 徐子怡 +1 位作者 郭宇 张建 《水土保持学报》 北大核心 2025年第2期338-347,共10页
[目的]构建喜马拉雅东构造结地区大范围的多时相滑坡清单,量化滑坡侵蚀速率,揭示滑坡过程在该区域的地貌学意义。[方法]基于粒子群优化算法(particle swarm optimization,PSO)进行遥感影像归一化植被指数(normalized difference vegetat... [目的]构建喜马拉雅东构造结地区大范围的多时相滑坡清单,量化滑坡侵蚀速率,揭示滑坡过程在该区域的地貌学意义。[方法]基于粒子群优化算法(particle swarm optimization,PSO)进行遥感影像归一化植被指数(normalized difference vegetation index,NDVI)的变化检测,构建1987-2021年东构造结地区的多时相滑坡清单;根据滑坡面积-体积经验公式计算该区域的滑坡侵蚀速率;结合气候和地形等参数,探讨滑坡过程的诱发因素。[结果]研究区1987-2021年共识别滑坡1 323次,其中2017-2021年的滑坡数量最多,共389次;滑坡主要分布在雅鲁藏布江大拐弯附近的河谷两侧;研究区滑坡侵蚀速率为0~76.06 mm/a,平均值为0.44 mm/a,呈以雅鲁藏布江大拐弯段为中心向四周逐渐降低的变化趋势;滑坡侵蚀速率与地质尺度岩体的剥露速率及千年尺度流域平均侵蚀速率相近;研究区滑坡的发生与降雨过程和地震活动相关,主要发育在南向坡面上,并在海拔1 500~3 000 m和坡度35°~45°聚集。[结论]滑坡是东构造结地区的主导侵蚀过程;降雨受迎风坡效应的影响在南向坡面富集,驱动该坡向上滑坡的集中分布。降水促进河流下切,以陡化边坡的方式诱发滑坡。 展开更多
关键词 粒子优化算法 多时相滑坡清单 喜马拉雅东构造结 滑坡侵蚀速率 地貌演化
在线阅读 下载PDF
粒子群算法与有限元融合驱动的薄壁复合材料构件支撑布局优化
6
作者 王福吉 何青松 +3 位作者 付饶 邓俊 林永权 马兴 《航空制造技术》 北大核心 2025年第6期40-47,共8页
薄壁复合材料构件的支撑布局设计是抑制其加工振动及变形的重要方法,但多数支撑布局的优化过程中只考虑单一的振动或变形,并且忽略了吸盘吸附对工件的影响,与实际工况有较大偏差。本文提出一种粒子群算法和有限元融合驱动的薄壁构件支... 薄壁复合材料构件的支撑布局设计是抑制其加工振动及变形的重要方法,但多数支撑布局的优化过程中只考虑单一的振动或变形,并且忽略了吸盘吸附对工件的影响,与实际工况有较大偏差。本文提出一种粒子群算法和有限元融合驱动的薄壁构件支撑布局优化方法,综合考虑了工件吸附变形、支撑后工件固有频率与刀具激励频率有效分离、额外辅助支撑等因素,能够在保证最大变形量满足要求的前提下实现支撑点数量及位置的优化。首先逐次在最大变形处增加支撑点直至满足变形要求,再在易产生共振的固有频率所对应振型的最大振幅处增加支撑点,直到满足频率要求,然后利用优化算法找到最小支撑点数量并进行最小支撑点数量下的支撑布局优化,最后开发了基于Abaqus和粒子群算法的支撑布局优化模块,进行了构件优化计算和试验验证。结果表明,该方法能够在保证频率及变形要求的前提下,有效减少支撑点数量。 展开更多
关键词 薄壁构件 支撑布局优化 有限元 粒子算法 变形
在线阅读 下载PDF
基于系统辨识和改进多目标粒子群算法的水泥原料配比优化
7
作者 秦红斌 陈龙 +1 位作者 唐红涛 张峰 《控制工程》 北大核心 2025年第7期1260-1270,共11页
为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对... 为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对其进行求解;然后,建立了以最小化原料成本和原料配比调整量为目标的原料配比多目标优化模型,将各项生料质量控制指标加入约束条件以保证解的可行性,并提出了改进多目标粒子群优化算法对模型进行求解。实验结果表明,相比于非支配排序遗传算法II(non-dominated sorting genetic algorithm II,NSGA-II)和人工配比,采用所提算法优化原料配比,不仅将各项生料质量控制指标较好地控制在目标范围内,还降低了原料成本。 展开更多
关键词 水泥原料配比 原料氧化物含量等效值 系统辨识 改进多目标粒子优化算法
在线阅读 下载PDF
基于粒子群算法燃油齿轮泵多目标优化设计
8
作者 王建森 李文宣 +3 位作者 司国雷 陈君辉 杨广胜 魏列江 《机床与液压》 北大核心 2025年第8期150-155,共6页
针对某型航空燃油齿轮泵的性能需求指标,为了实现泵低流量脉动特性及轻量化设计要求,以瞬时几何流量脉动率和齿轮泵体积最小为优化目标,以齿数、模数、压力角、变位系数及齿宽为设计变量,并结合相应约束条件建立了齿轮泵优化设计模型,... 针对某型航空燃油齿轮泵的性能需求指标,为了实现泵低流量脉动特性及轻量化设计要求,以瞬时几何流量脉动率和齿轮泵体积最小为优化目标,以齿数、模数、压力角、变位系数及齿宽为设计变量,并结合相应约束条件建立了齿轮泵优化设计模型,利用粒子群多目标优化算法进行寻优计算;绘制了优化目标对应的Pareto曲线,从中选出了一组满足设计要求的齿轮参数。并利用计算流体力学方法对该参数下的齿轮泵内部流场参数分布及瞬时几何流量特性进行了模拟分析,验证了所提方案的可行性。最后,完成了样机的加工制造及性能测试。结果表明:泵的实际输出流量与理论流量的一致性好,验证了优化模型及设计方法的可行性,为后续燃油齿轮泵进一步改进定型奠定了基础。 展开更多
关键词 燃油齿轮泵 多目标优化 流量脉动率 齿轮泵体积 粒子算法
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法
9
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于粒子群算法的零齿差内啮合机构优化
10
作者 王世杰 杨喆 《沈阳工业大学学报》 北大核心 2025年第1期61-66,共6页
【目的】针对潜油螺杆泵采油系统中联轴装置零齿差内啮合机构重合度低、内外齿轮齿厚系数不稳定以及齿厚偏薄易导致轮齿折断等问题,提出了一种优化机构内变位系数、提高重合度值的方法,并设计了相应的优化模型。【方法】分析了传统设计... 【目的】针对潜油螺杆泵采油系统中联轴装置零齿差内啮合机构重合度低、内外齿轮齿厚系数不稳定以及齿厚偏薄易导致轮齿折断等问题,提出了一种优化机构内变位系数、提高重合度值的方法,并设计了相应的优化模型。【方法】分析了传统设计方法中零齿差机构变位系数的设计缺陷,明确了目标函数和约束条件,定义了设计变量。采用粒子群优化(PSO)算法中的惯性权重线性递减策略提升粒子的局部与全局寻优能力,引入收缩因子并通过改进的速度更新迭代公式缩短收敛时间。以重合度和齿厚系数为优化目标函数,同时结合零齿差内啮合机构的齿轮约束条件建立了优化模型。【结果】为验证算法的稳定性,以用户输入的初始参数(内外齿轮模数为6,齿数为12,分度圆压力角为20°,外齿轮齿宽为30 mm,内齿轮齿宽为28 mm,偏心量范围为2.5~5 mm)进行优化分析。结果表明,通过改进PSO算法得到了径向变位系数和切向变位系数的最优解,即改进PSO算法显著提升了变位系数的优化效果。对比原始数据和优化结果,改进PSO算法的重合度提升了最高达26.2%,特别是在不同偏心量下,优化后的重合度均显著提高。【结论】通过对比改进前后的PSO算法,改进后的算法兼具全局收敛性与精确搜索能力,所得变位系数更加合理有效;优化后的齿厚系数更加平稳,显著降低了轮齿折断风险。最终优化后的变位系数不仅满足各项约束条件,且便于后续加工,提高了计算效率,显现出良好的设计效果。 展开更多
关键词 零齿差内啮合 变位系数 重合度 粒子算法 优化设计 惯性权重 收缩因子
在线阅读 下载PDF
基于多目标粒子群优化算法设计的双波段窄带热辐射器
11
作者 邱千里 章晋国 +4 位作者 周东劼 谈冲 孙艳 郝加明 戴宁 《红外与毫米波学报》 北大核心 2025年第1期11-16,共6页
双波段窄带热辐射器在红外传感、加密、检测等众多领域具有重要的应用潜力。这种辐射器能够提供集中且精确的红外辐射能量,从而提高红外技术的灵敏度和分辨率。不过,在不同波段构建窄带辐射的条件通常会相互制约,同时实现双波段窄带热... 双波段窄带热辐射器在红外传感、加密、检测等众多领域具有重要的应用潜力。这种辐射器能够提供集中且精确的红外辐射能量,从而提高红外技术的灵敏度和分辨率。不过,在不同波段构建窄带辐射的条件通常会相互制约,同时实现双波段窄带热辐射仍具有一定的挑战性。本文提出了一种新型无需光刻的红外双波段窄带热辐射器。该辐射器由铝薄膜上非周期性的交替沉积Ge和YbF_(3)薄膜组成,Ge和YbF_(3)薄膜组成的分布式布拉格反射镜和铝基底在一定条件下可以激发Tamm等离激元(Tamm Plasmon Polaritons,TPPs),从而实现窄带辐射。首先使用多目标粒子群优化算法对辐射器的结构参数进行优化,以满足双波段TPP的激发条件。实验结果也验证了双波段辐射器在中波红外和长波红外波段具有窄带辐射的特性。本文提出的方法也可用于多波段辐射调控器件的设计,从而可以应用于多气体传感和多带红外伪装等领域。 展开更多
关键词 双波段窄带热辐射器 多目标粒子优化算法 长波红外
在线阅读 下载PDF
粒子群算法多目标优化下的超混沌人脸图像加密
12
作者 余锦伟 谢巍 +1 位作者 张浪文 余孝源 《控制理论与应用》 北大核心 2025年第5期875-884,共10页
本文将粒子群优化算法(PSO)与超混沌系统相结合,提出一种基于多目标优化的人脸图像加密方案.该方案通过PSO算法协同优化多项加密评估指标,包括相关关系、像素变化率(NPCR)、统一平均变化强度(UACI)和信息熵.首先,初始化混沌系统的控制参... 本文将粒子群优化算法(PSO)与超混沌系统相结合,提出一种基于多目标优化的人脸图像加密方案.该方案通过PSO算法协同优化多项加密评估指标,包括相关关系、像素变化率(NPCR)、统一平均变化强度(UACI)和信息熵.首先,初始化混沌系统的控制参数,并采用SHA-256算法生成混沌系统的初始值,迭代生成高敏感性的随机序列;其次,利用随机序列执行像素置乱、扩散和行列置乱操作,生成初始加密人脸图像;然后,将加密人脸图像视为PSO算法的个体,通过迭代更新个体的位置优化考虑多项指标的适应性函数;最后,确定混沌系统的最优参数,并得到最佳的加密人脸图像.实验结果表明,本文的方法在信息熵、像素相关系数、NPCR和UACI方面的表现都优于主流方法,这说明本文所提方法具有更高的安全性. 展开更多
关键词 混沌系统 粒子算法 图像加密 智能优化 人脸隐私保护
在线阅读 下载PDF
基于改进量子粒子群算法的新能源汽车换电站优化布局 被引量:5
13
作者 韩顺杰 于渲铎 +1 位作者 李东奇 董吉哲 《科学技术与工程》 北大核心 2024年第27期11720-11725,共6页
为了针对在新能源换电汽车发展普及过程中的换电站建设相关问题,通过建立以换电站运营目标年限年均综合费用最小为目标,综合考虑土地价格、建站成本、运营成本、维护成本、道路流量、服务能力等因素的优化目标数学模型,以换电能力、换... 为了针对在新能源换电汽车发展普及过程中的换电站建设相关问题,通过建立以换电站运营目标年限年均综合费用最小为目标,综合考虑土地价格、建站成本、运营成本、维护成本、道路流量、服务能力等因素的优化目标数学模型,以换电能力、换电距离为约束条件。同时利用改进的量子粒子群算法对模型求解,算法引入自适应调整的惯性权重,提高粒子的整体搜索能力,利用Logistic混沌映射初始化种群信息,提升种群的遍历性,通过Levy飞行策略与Cauchy变异策略,提升种群的多样性并扩大算法在迭代过程中的搜索空间,进一步提升算法的全局搜索能力并快速跳出局部最优区域。利用该算法对长春市宽城区进行实际规划,将该区域相关数据引入建立的数学模型,确定了该区域内建设四座换电站时符合预期建设目标,同时确定各电站建设位置及容量,证明研究结果的可行性与实用性。 展开更多
关键词 新能源汽车 改进量子粒子算法 换电站 选址定容
在线阅读 下载PDF
基于多群自适应协同粒子群优化算法的光储热泵系统研究
14
作者 刘鑫冉 吴振奎 +1 位作者 张腾飞 宋庚岭 《现代电子技术》 北大核心 2025年第10期127-134,共8页
为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同... 为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同粒子群优化算法。修正各子群的粒子惯性权重,通过多群协同机制避免求解过程陷入局部最优,并采用自适应性策略(ACS)来控制历史信息的影响,以提高子群的搜索效率和目标解的精度。实验结果表明:所提方法优化了光伏-储能-热泵系统的协同运行能力,避免了资源失配造成的能量浪费问题,且能够实现以清洁能源为热泵供电的目标,有效缓解北方地区冬季供热压力;该方法还将离网负荷供电可靠性提升至更高水平,兼具环境效益与工程应用潜力。 展开更多
关键词 热泵供暖系统 光伏发电 蓄电池储能 自适应多目标粒子算法 能量分配 系统优化
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
15
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于V型变异二进制粒子群算法的天线拓扑优化
16
作者 窦江玲 魏帅兵 +2 位作者 宋健 王青旺 沈韬 《微波学报》 CSCD 北大核心 2024年第S1期288-291,共4页
提出了一种基于V型变异二进制粒子群算法(VMBPSO)的天线拓扑优化方法,旨在突破天线尺寸优化时初始模型结构对性能拓展的限制,提高设计自由度。首先,引入了一种新的V型转换函数,避免了原始BPSO算法中由于速度值过大而导致的早熟问题。此... 提出了一种基于V型变异二进制粒子群算法(VMBPSO)的天线拓扑优化方法,旨在突破天线尺寸优化时初始模型结构对性能拓展的限制,提高设计自由度。首先,引入了一种新的V型转换函数,避免了原始BPSO算法中由于速度值过大而导致的早熟问题。此外,引入了一种变异算子M,通过对粒子进行自适应变异,保证种群多样性的同时提高了算法的局部搜索能力。为了验证该优化方法的有效性,利用其优化微带贴片天线。实验结果表明,该方法可以根据目标函数灵活设计天线,以中心频点在2.45GHz、3.5GHz、5.8GHz的三频段天线设计任务为例,算法仅需649次全波电磁仿真即可收敛至目标解。 展开更多
关键词 二进制粒子算法(BPSO) 贴片天线 多样性 变异 拓扑优化
在线阅读 下载PDF
基于响应曲面法和粒子群优化算法的凸轮磨削工艺参数优化 被引量:1
17
作者 丁明阳 赵锦国 +5 位作者 周康康 徐刚强 李孝禄 朱彦康 陈源 梁明轩 《内燃机工程》 北大核心 2025年第1期80-90,共11页
为了提高凸轮工件表面磨削质量及加工效率,设计了凸轮磨削正交试验方案,优化了淬硬球墨铸铁凸轮精加工磨削的工艺参数。通过建立以砂轮线速度、工件转速、磨削深度为关键参数表征的优化变量,构建以磨削振动加速度、表面粗糙度为指标的... 为了提高凸轮工件表面磨削质量及加工效率,设计了凸轮磨削正交试验方案,优化了淬硬球墨铸铁凸轮精加工磨削的工艺参数。通过建立以砂轮线速度、工件转速、磨削深度为关键参数表征的优化变量,构建以磨削振动加速度、表面粗糙度为指标的目标响应非线性数学模型;基于凸轮的形状特点,建立工件瞬时材料去除率模型;以最小化磨削振动、表面粗糙度及最大化去除率为优化目标,利用综合函数法与粒子群优化(particle swarm optimization,PSO)算法对工艺参数进行了优化。结果表明,在砂轮线速度80.6731 m/s、工件转速35 r/min、磨削深度30μm的工况下,磨削振动减少了20.8%,凸轮表面粗糙度值降低了11.88%,材料去除率增加了22.739 mm3/s。利用扫描电镜(scanning electron microscope,SEM)对磨削后工件的表面形貌进行了分析,并对元素成分进行半定量测定。结果表明,砂轮线速度较小而工件转速及磨削深度较大时,凸轮表面缺陷和形变对表面粗糙度影响较大。 展开更多
关键词 凸轮磨削 参数优化 响应曲面法 粒子优化算法 显微分析
在线阅读 下载PDF
基于网格算法和粒子群算法的随机森林参数优化 被引量:1
18
作者 周古辛 胡桂开 《安徽大学学报(自然科学版)》 北大核心 2025年第3期27-34,共8页
随机森林是一种高效且被广泛应用的集成机器学习算法,主要应用于回归、分类、特征选择等方面.为提高预测的准确度和稳定性,算法中的重要参数需要进一步优化.论文主要对该问题进行研究,并提出了一种基于网格算法和粒子群算法的参数优化方... 随机森林是一种高效且被广泛应用的集成机器学习算法,主要应用于回归、分类、特征选择等方面.为提高预测的准确度和稳定性,算法中的重要参数需要进一步优化.论文主要对该问题进行研究,并提出了一种基于网格算法和粒子群算法的参数优化方法.首先,利用网格算法对参数进行优化,得到参数的合理区间范围;其次,在该区间范围内利用粒子群算法对决策树数量和选择特征数量两个参数进一步优化;最后,利用经典案例将论文的方法与现有方法进行模拟比较.结果表明:该方法能够更好地减少袋外误差,提高预测的准确度. 展开更多
关键词 随机森林 参数优化 袋外误差 网格搜索 粒子算法
在线阅读 下载PDF
一种基于遗传算法改进粒子群算法的光储氢并网型微电网容量配置优化模型研究
19
作者 徐展鹏 陈福新 +1 位作者 杨雪凡 卢琴芬 《太阳能学报》 北大核心 2025年第7期144-153,共10页
以并网型光储氢微电网为研究对象,为提升其可再生能源消纳能力、碳减排能力和经济性,提出一种基于遗传算法改进粒子群算法的容量配置优化模型。优化模型目标函数为最大年综合利润,不仅将投资运维、绿证交易和碳交易机制引入系统运行成... 以并网型光储氢微电网为研究对象,为提升其可再生能源消纳能力、碳减排能力和经济性,提出一种基于遗传算法改进粒子群算法的容量配置优化模型。优化模型目标函数为最大年综合利润,不仅将投资运维、绿证交易和碳交易机制引入系统运行成本和收益,且提出一种基于电氢储能实时收益系数的协调控制策略,使得光氢利润基于分时电价进行实时变化、储能设备的出力顺序根据实时收益系数来优化;优化变量为光、氢与储能的容量;优化方法为遗传算法改进的粒子群优化算法,其在改进粒子群优化算法引入遗传算法的思想,对粒子种群的位置进行选择、交叉与变异操作,提高全局优化能力。通过优化设计实例与影响因素分析实例,验证了优化模型的有效性。 展开更多
关键词 光氢储微电网 并网型 容量配置 遗传算法 改进粒子优化算法
在线阅读 下载PDF
基于时序演变粒子群算法的双色注射产品翘曲工艺优化
20
作者 王涛 李光明 +1 位作者 胡秋霞 徐静 《化工学报》 北大核心 2025年第7期3403-3415,共13页
以某轿车精密仪表板双色注射成型为研究对象,通过优化双色注射成型工艺参数,降低产品翘曲变形,从而提高产品质量。鉴于双色注射工艺参数与产品翘曲变形之间呈现高维度、非线性、波动性等特征且多工序耦合严重,极易导致传统优化方法陷入... 以某轿车精密仪表板双色注射成型为研究对象,通过优化双色注射成型工艺参数,降低产品翘曲变形,从而提高产品质量。鉴于双色注射工艺参数与产品翘曲变形之间呈现高维度、非线性、波动性等特征且多工序耦合严重,极易导致传统优化方法陷入局部最优,造成优化困难等问题,提出了一种基于时序演变的粒子群优化算法(TEPSO),利用正交膨胀空间均衡散布的优点提高粒子群的搜索能力和效率,并采用Q-Learning思想,通过粒子与环境的不断交互探索,开发基于时序演变的学习策略以确定粒子正交空间的膨胀因子。在某轿车仪表板优化设计中,与初始试验方案相比,采用TEPSO算法优化后仪表板Z向翘曲从4.698 mm降低到2.194 mm,优化效果达到53.3%,证实了TEPSO算法的有效性和实用性。 展开更多
关键词 双色注射成型 粒子算法 强化学习 优化设计 翘曲变形 模拟 预测
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部