针对压缩传感(Compressed sensing,CS)理论中迭代硬阈值(Iterative hard thresholding,IHT)算法迭代次数多和时间长的问题,提出基于回溯的迭代硬阈值算法(Backtracking-based iterative hard thresholding,BIHT),该算法通过加入回溯的思...针对压缩传感(Compressed sensing,CS)理论中迭代硬阈值(Iterative hard thresholding,IHT)算法迭代次数多和时间长的问题,提出基于回溯的迭代硬阈值算法(Backtracking-based iterative hard thresholding,BIHT),该算法通过加入回溯的思想,优化了IHT算法迭代支撑的选择,减少支撑被反复选择的次数.模拟实验表明,在保证重建质量的前提下,相比较于IHT和正规化迭代硬阈值(Normalized IHT,NIHT)算法,BIHT算法的重建时间降低了2个数量级.用本身稀疏的0-1随机信号的重建实验表明,若测量次数和稀疏度相同,BIHT算法的重建概率高于IHT算法.展开更多
为了改进基于压缩感知(CS)的欠Nyquist采样系统在冗余字典条件下信号重构的效果,研究了基于ε-闭包的分块联合稀疏模型的同步迭代硬阈值(SIHT)算法。分析了采样系统基于多测量向量(MMV)的CS合成模型,提出了ε-闭包的分块相干性和约束等...为了改进基于压缩感知(CS)的欠Nyquist采样系统在冗余字典条件下信号重构的效果,研究了基于ε-闭包的分块联合稀疏模型的同步迭代硬阈值(SIHT)算法。分析了采样系统基于多测量向量(MMV)的CS合成模型,提出了ε-闭包的分块相干性和约束等距特性(RIP)概念;在迭代过程中根据冗余字典分块相干性,对更新支撑集进行优选从而完成算法改进;给出了迭代收敛常数,并分析了改进型算法的收敛特性。仿真实验结果表明,相比传统算法,改进型算法在采样系统足够的通道数条件下重构成功率可达到100%,噪声抑制能力能够提高7 d B^9 d B,总运算时间可以降低至少37.9%,信号重构收敛速度更快。展开更多
针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为...针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为了使算法能适应高斯噪声和不同强度的脉冲噪声,将位置得分函数表示为高斯位置得分函数和一系列非线性函数的线性组合,利用噪声样本估计线性组合系数从而建立损失函数。最后,采用迭代硬阈值算法进行稀疏重构,并通过改进信号更新策略提高正确收敛的概率。仿真结果表明,所提算法能有效抑制互耦效应和脉冲(高斯)噪声的干扰,同时相较已有算法在低信噪比、强脉冲特性下的性能有显著提升。展开更多
文摘针对压缩传感(Compressed sensing,CS)理论中迭代硬阈值(Iterative hard thresholding,IHT)算法迭代次数多和时间长的问题,提出基于回溯的迭代硬阈值算法(Backtracking-based iterative hard thresholding,BIHT),该算法通过加入回溯的思想,优化了IHT算法迭代支撑的选择,减少支撑被反复选择的次数.模拟实验表明,在保证重建质量的前提下,相比较于IHT和正规化迭代硬阈值(Normalized IHT,NIHT)算法,BIHT算法的重建时间降低了2个数量级.用本身稀疏的0-1随机信号的重建实验表明,若测量次数和稀疏度相同,BIHT算法的重建概率高于IHT算法.
文摘为了改进基于压缩感知(CS)的欠Nyquist采样系统在冗余字典条件下信号重构的效果,研究了基于ε-闭包的分块联合稀疏模型的同步迭代硬阈值(SIHT)算法。分析了采样系统基于多测量向量(MMV)的CS合成模型,提出了ε-闭包的分块相干性和约束等距特性(RIP)概念;在迭代过程中根据冗余字典分块相干性,对更新支撑集进行优选从而完成算法改进;给出了迭代收敛常数,并分析了改进型算法的收敛特性。仿真实验结果表明,相比传统算法,改进型算法在采样系统足够的通道数条件下重构成功率可达到100%,噪声抑制能力能够提高7 d B^9 d B,总运算时间可以降低至少37.9%,信号重构收敛速度更快。
文摘针对互耦效应和脉冲噪声并存环境下的波达方向(direction of arrival,DOA)估计问题,提出一种结合M估计与稀疏重构的算法。首先,为了消除互耦效应的影响,依据互耦矩阵的托普利兹结构进行恒等变形,得到了不含未知互耦系数的字典。随后,为了使算法能适应高斯噪声和不同强度的脉冲噪声,将位置得分函数表示为高斯位置得分函数和一系列非线性函数的线性组合,利用噪声样本估计线性组合系数从而建立损失函数。最后,采用迭代硬阈值算法进行稀疏重构,并通过改进信号更新策略提高正确收敛的概率。仿真结果表明,所提算法能有效抑制互耦效应和脉冲(高斯)噪声的干扰,同时相较已有算法在低信噪比、强脉冲特性下的性能有显著提升。