期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于ConvLSTM的中国东南沿海波浪智能预报和评估
1
作者
金阳
韩磊
+1 位作者
金梅兵
董昌明
《海洋学研究》
CSCD
北大核心
2024年第3期88-98,共11页
相较于半理论半分析和数值模型的波浪预报方法,智能波浪预报有着精度高、计算资源需求低的优势。该文基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)算法,建立了有效波高(significant wave height,SWH...
相较于半理论半分析和数值模型的波浪预报方法,智能波浪预报有着精度高、计算资源需求低的优势。该文基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)算法,建立了有效波高(significant wave height,SWH)二维预报模型,以中国东南沿海2014—2022年ERA5数据进行训练,通过敏感性试验优化模型配置,并开展中国东南沿海SWH在2023年4个预报时效(6 h、12 h、18 h、24 h)下的预测性能评估。敏感性试验显示,输入时间序列长度N=4(即输入-18 h,-12 h,-6 h,0 h的SWH值)时,模型在4个预报时效下的准确性均优于其他时间序列长度;输入物理要素组合为SWH、平均波向和海面10 m风矢量时,模型在12 h、18 h和24 h预报时效下的准确性优于其他组合。通过对ConvLSTM模型训练及配置的精细调整,可以实现对中国东南沿海SWH的二维、高精度的智能预报。
展开更多
关键词
中国近海
卷积长短期记忆网络
数据驱动
海浪
有效波高
二维预报模型
短期
预报
人工智能
深度学习
在线阅读
下载PDF
职称材料
题名
基于ConvLSTM的中国东南沿海波浪智能预报和评估
1
作者
金阳
韩磊
金梅兵
董昌明
机构
南京信息工程大学海洋科学学院
南方海洋科学与工程广东省实验室(珠海)
出处
《海洋学研究》
CSCD
北大核心
2024年第3期88-98,共11页
基金
国家重点研发计划项目(2023YFC3008200)
江苏省研究生科研与实践创新计划项目(KYCX22_1171)。
文摘
相较于半理论半分析和数值模型的波浪预报方法,智能波浪预报有着精度高、计算资源需求低的优势。该文基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)算法,建立了有效波高(significant wave height,SWH)二维预报模型,以中国东南沿海2014—2022年ERA5数据进行训练,通过敏感性试验优化模型配置,并开展中国东南沿海SWH在2023年4个预报时效(6 h、12 h、18 h、24 h)下的预测性能评估。敏感性试验显示,输入时间序列长度N=4(即输入-18 h,-12 h,-6 h,0 h的SWH值)时,模型在4个预报时效下的准确性均优于其他时间序列长度;输入物理要素组合为SWH、平均波向和海面10 m风矢量时,模型在12 h、18 h和24 h预报时效下的准确性优于其他组合。通过对ConvLSTM模型训练及配置的精细调整,可以实现对中国东南沿海SWH的二维、高精度的智能预报。
关键词
中国近海
卷积长短期记忆网络
数据驱动
海浪
有效波高
二维预报模型
短期
预报
人工智能
深度学习
Keywords
coast of China
convolutional long short-term memory network(ConvLSTM)
data-driven
wave
significant wave height(SWH)
two-dimensional prediction model
short-time forecast
artificial intelligence
deep learning
分类号
P731.33 [天文地球—海洋科学]
P714 [天文地球—海洋科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于ConvLSTM的中国东南沿海波浪智能预报和评估
金阳
韩磊
金梅兵
董昌明
《海洋学研究》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部