期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ConvLSTM的中国东南沿海波浪智能预报和评估
1
作者 金阳 韩磊 +1 位作者 金梅兵 董昌明 《海洋学研究》 CSCD 北大核心 2024年第3期88-98,共11页
相较于半理论半分析和数值模型的波浪预报方法,智能波浪预报有着精度高、计算资源需求低的优势。该文基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)算法,建立了有效波高(significant wave height,SWH... 相较于半理论半分析和数值模型的波浪预报方法,智能波浪预报有着精度高、计算资源需求低的优势。该文基于卷积长短期记忆网络(convolutional long short-term memory network,ConvLSTM)算法,建立了有效波高(significant wave height,SWH)二维预报模型,以中国东南沿海2014—2022年ERA5数据进行训练,通过敏感性试验优化模型配置,并开展中国东南沿海SWH在2023年4个预报时效(6 h、12 h、18 h、24 h)下的预测性能评估。敏感性试验显示,输入时间序列长度N=4(即输入-18 h,-12 h,-6 h,0 h的SWH值)时,模型在4个预报时效下的准确性均优于其他时间序列长度;输入物理要素组合为SWH、平均波向和海面10 m风矢量时,模型在12 h、18 h和24 h预报时效下的准确性优于其他组合。通过对ConvLSTM模型训练及配置的精细调整,可以实现对中国东南沿海SWH的二维、高精度的智能预报。 展开更多
关键词 中国近海 卷积长短期记忆网络 数据驱动 海浪 有效波高 二维预报模型 短期预报 人工智能 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部