传统的基于统计的子空间学习算法如主成分分析,通过学习只能得到一系列特征脸,忽略了人脸识别中重要的局部信息(如眼睛、鼻子)。而利用到类别信息的算法如线性判别分析,也会因为小样本问题而有所影响。为了解决这些问题,结合二维偏最小...传统的基于统计的子空间学习算法如主成分分析,通过学习只能得到一系列特征脸,忽略了人脸识别中重要的局部信息(如眼睛、鼻子)。而利用到类别信息的算法如线性判别分析,也会因为小样本问题而有所影响。为了解决这些问题,结合二维偏最小二乘与非负矩阵分解的非负性思想提出二维非负偏最小二乘(Two-Dimensional Nonnegative Partial Least Squares,2DNPLS)算法。其核心思想是在提取人脸特征时加入了非负性约束,使得2DNPLS不仅拥有偏最小二乘算法加入类别信息带来的分类效果,还保留了图像矩阵的内部结构信息,而且还使得到的基矩阵具有非负的局部的可解释性。在ORL,Yale人脸库中的实验结果表明,该算法从时间上和识别率上均优于人脸识别的主流算法。展开更多
为了提高高光谱遥感影像的分类精度,提出了一种基于稀疏非负最小二乘编码的高光谱数据分类方法。采用非负最小二乘方法,将待测样本表示为训练样本的线性组合,并将得到的系数作为待测样本的特征向量,通过最小误差方法对待测样本进行分类...为了提高高光谱遥感影像的分类精度,提出了一种基于稀疏非负最小二乘编码的高光谱数据分类方法。采用非负最小二乘方法,将待测样本表示为训练样本的线性组合,并将得到的系数作为待测样本的特征向量,通过最小误差方法对待测样本进行分类。提出的方法在AVIRIS Indian Pines和萨利纳斯山谷高光谱遥感数据集上进行分类实验,并和主成分分析(PCA)、支持向量机(SVM)和基于稀疏表示分类器(SRC)方法进行比较,在2个数据集上本文方法的总体识别精度分别达到85.31%和99.56%,Kappa系数分别为0.816 3和0.986 7。实验结果表明本文方法的总体识别精度和Kappa系数都优于另外3种方法,是一种较好的高光谱遥感数据分类方法。展开更多
文摘传统的基于统计的子空间学习算法如主成分分析,通过学习只能得到一系列特征脸,忽略了人脸识别中重要的局部信息(如眼睛、鼻子)。而利用到类别信息的算法如线性判别分析,也会因为小样本问题而有所影响。为了解决这些问题,结合二维偏最小二乘与非负矩阵分解的非负性思想提出二维非负偏最小二乘(Two-Dimensional Nonnegative Partial Least Squares,2DNPLS)算法。其核心思想是在提取人脸特征时加入了非负性约束,使得2DNPLS不仅拥有偏最小二乘算法加入类别信息带来的分类效果,还保留了图像矩阵的内部结构信息,而且还使得到的基矩阵具有非负的局部的可解释性。在ORL,Yale人脸库中的实验结果表明,该算法从时间上和识别率上均优于人脸识别的主流算法。
文摘为了提高高光谱遥感影像的分类精度,提出了一种基于稀疏非负最小二乘编码的高光谱数据分类方法。采用非负最小二乘方法,将待测样本表示为训练样本的线性组合,并将得到的系数作为待测样本的特征向量,通过最小误差方法对待测样本进行分类。提出的方法在AVIRIS Indian Pines和萨利纳斯山谷高光谱遥感数据集上进行分类实验,并和主成分分析(PCA)、支持向量机(SVM)和基于稀疏表示分类器(SRC)方法进行比较,在2个数据集上本文方法的总体识别精度分别达到85.31%和99.56%,Kappa系数分别为0.816 3和0.986 7。实验结果表明本文方法的总体识别精度和Kappa系数都优于另外3种方法,是一种较好的高光谱遥感数据分类方法。