The problems of characteristic polynomial assignment in Fomasini-Marchesini (F-M) model Ⅱ of 2-D systems are investigated. The corresponding closed-loop systems described by F-M model II are obtained via the state fe...The problems of characteristic polynomial assignment in Fomasini-Marchesini (F-M) model Ⅱ of 2-D systems are investigated. The corresponding closed-loop systems described by F-M model II are obtained via the state feedback. Using the algebraic geometry method, the characteristic polynomial assignment in the dosed-loop systems is discussed. In terms of the theory of algebraic geometry, the problem of characteristic polynomial assignment is transferred to the one whether a rational mapping is onto. Sufficient conditions for almost arbitrary assignment coefficients of characteristic polynomial in F-M model Ⅱ of 2-D systems via state feedback are derived, and they are available for multi-input cases. It also has been shown that this method can be applied to assign the characteristic polynomial with output feedback. The sufficient conditions for almost arbitrary assignment coefficients of characteristic polynomial of multi-input 2-D systems described by F-M model Ⅱ with output feedback are established.展开更多
A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe ...A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe both the control behavior within a repetition period and the learning process taking place between periods. Next, by converting the designing problem of repetitive controller into one of the feedback gains of reconstructed variables, the stable condition was obtained through linear matrix inequality(LMI) and also the gain coefficient of repetitive system. Numerical simulation shows an exceptional feasibility of this proposal with remarkable robustness and tracking speed.展开更多
文摘The problems of characteristic polynomial assignment in Fomasini-Marchesini (F-M) model Ⅱ of 2-D systems are investigated. The corresponding closed-loop systems described by F-M model II are obtained via the state feedback. Using the algebraic geometry method, the characteristic polynomial assignment in the dosed-loop systems is discussed. In terms of the theory of algebraic geometry, the problem of characteristic polynomial assignment is transferred to the one whether a rational mapping is onto. Sufficient conditions for almost arbitrary assignment coefficients of characteristic polynomial in F-M model Ⅱ of 2-D systems via state feedback are derived, and they are available for multi-input cases. It also has been shown that this method can be applied to assign the characteristic polynomial with output feedback. The sufficient conditions for almost arbitrary assignment coefficients of characteristic polynomial of multi-input 2-D systems described by F-M model Ⅱ with output feedback are established.
基金Project(61104072) supported by the National Natural Science Foundation of China
文摘A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe both the control behavior within a repetition period and the learning process taking place between periods. Next, by converting the designing problem of repetitive controller into one of the feedback gains of reconstructed variables, the stable condition was obtained through linear matrix inequality(LMI) and also the gain coefficient of repetitive system. Numerical simulation shows an exceptional feasibility of this proposal with remarkable robustness and tracking speed.