In this paper,an improved mean-square exponential stability condition and delayed-state-feedback controller for stochastic Markovian jump systems with mode-dependent time-varying state delays are obtained. First,by co...In this paper,an improved mean-square exponential stability condition and delayed-state-feedback controller for stochastic Markovian jump systems with mode-dependent time-varying state delays are obtained. First,by constructing a modified Lyapunov-Krasovskii functional,a mean-square exponential stability condition for the above systems is presented in terms of linear matrix inequalities (LMIs). Here,the decay rate can be a finite positive constant in a range and the derivative of time-varying delays is only required to have an upper bound which is not required to be less than 1. Then,based on the proposed stability condition,a delayed-state-feedback controller is designed. Finally,numerical examples are presented to illustrate the effectiveness of the theoretical results.展开更多
为了反映风电系统参数连续变化对其电压稳定性的影响和揭示风电系统电压稳定机制,针对目前的分岔理论研究了风电系统电压稳定性的局限性,对风电系统进行了两参数鞍结分岔边界的计算与研究。借助常规电力系统计算二维参数分岔边界的方法...为了反映风电系统参数连续变化对其电压稳定性的影响和揭示风电系统电压稳定机制,针对目前的分岔理论研究了风电系统电压稳定性的局限性,对风电系统进行了两参数鞍结分岔边界的计算与研究。借助常规电力系统计算二维参数分岔边界的方法和思路,以风电注入有功功率Pinject、静止无功补偿(static var compensation,SVC)参数Bmax、放大倍数Kr为分岔控制参数,计算得到风电系统节点电压鞍结二维分岔边界。在此基础上深入分析,最后得出风电场注入有功和SVC参数共同作用下影响风电系统电压稳定性的规律:在SVC参数Bmax(或Kr)和风电注入有功功率Pinject的共同作用下,风电场机端(即补偿点)电压稳定性得以提高;增大SVC参数Bmax和Kr,都能有效扩展鞍结分岔边界,并且Bmax的作用更明显。展开更多
基金Supported by National Natural Science Foundation of China(60904026)the Program for New Century Excellent Talents in University+1 种基金the Graduate Innovation Program of Jiangsu Province(CX09B-051Z)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ0929)
文摘In this paper,an improved mean-square exponential stability condition and delayed-state-feedback controller for stochastic Markovian jump systems with mode-dependent time-varying state delays are obtained. First,by constructing a modified Lyapunov-Krasovskii functional,a mean-square exponential stability condition for the above systems is presented in terms of linear matrix inequalities (LMIs). Here,the decay rate can be a finite positive constant in a range and the derivative of time-varying delays is only required to have an upper bound which is not required to be less than 1. Then,based on the proposed stability condition,a delayed-state-feedback controller is designed. Finally,numerical examples are presented to illustrate the effectiveness of the theoretical results.
文摘为了反映风电系统参数连续变化对其电压稳定性的影响和揭示风电系统电压稳定机制,针对目前的分岔理论研究了风电系统电压稳定性的局限性,对风电系统进行了两参数鞍结分岔边界的计算与研究。借助常规电力系统计算二维参数分岔边界的方法和思路,以风电注入有功功率Pinject、静止无功补偿(static var compensation,SVC)参数Bmax、放大倍数Kr为分岔控制参数,计算得到风电系统节点电压鞍结二维分岔边界。在此基础上深入分析,最后得出风电场注入有功和SVC参数共同作用下影响风电系统电压稳定性的规律:在SVC参数Bmax(或Kr)和风电注入有功功率Pinject的共同作用下,风电场机端(即补偿点)电压稳定性得以提高;增大SVC参数Bmax和Kr,都能有效扩展鞍结分岔边界,并且Bmax的作用更明显。