期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SSA-VMD和SDP的双通道CNN轴承故障识别方法
1
作者
蒋丽英
高铭悦
李贺
《机电工程》
北大核心
2025年第2期257-266,共10页
针对滚动轴承故障振动信号具有非线性和非平稳性等特征,以及单通道卷积神经网络(CNN)提取故障特征不显著的问题,提出了一种基于麻雀算法-变分模态分解(SSA-VMD)和对称点模式(SDP)的双通道CNN滚动轴承故障诊断方法。首先,结合样本熵和皮...
针对滚动轴承故障振动信号具有非线性和非平稳性等特征,以及单通道卷积神经网络(CNN)提取故障特征不显著的问题,提出了一种基于麻雀算法-变分模态分解(SSA-VMD)和对称点模式(SDP)的双通道CNN滚动轴承故障诊断方法。首先,结合样本熵和皮尔逊相关系数,构建了新的综合适应度函数,利用麻雀算法(SSA)进行了自适应寻优,确定了最佳的变分模态分解(VMD)参数K和α。将原始振动信号经过VMD分解后,得到了本征模态函数(IMF)分量,通过计算各IMF分量的峭度值进行了筛选,将筛选出的信号进行重构后得到了一维特征信号;然后,根据互相关系数选择了合适的对称点模式(SDP)参数值,将原始振动信号转化为极坐标下的SDP图像,获得了具有良好可分性的二维特征图;最后,将一维和二维特征作为双通道CNN的输入进行了联合训练,将训练好的网络用于故障类型识别,在西储大学和江南大学的轴承数据集上对其有效性进行了验证。研究结果表明:通过网络训练,其故障诊断的准确率分别达到了98.5%和100%。该结果验证了该方法在准确识别故障特征方面具有优越性和普适性。
展开更多
关键词
一
维
特征
信号构建
二维特征转换
卷积神经网络
麻雀算法
变分模态分解
对称点模式
在线阅读
下载PDF
职称材料
题名
基于SSA-VMD和SDP的双通道CNN轴承故障识别方法
1
作者
蒋丽英
高铭悦
李贺
机构
沈阳航空航天大学自动化学院
出处
《机电工程》
北大核心
2025年第2期257-266,共10页
基金
国家自然科学基金资助项目(62003223)。
文摘
针对滚动轴承故障振动信号具有非线性和非平稳性等特征,以及单通道卷积神经网络(CNN)提取故障特征不显著的问题,提出了一种基于麻雀算法-变分模态分解(SSA-VMD)和对称点模式(SDP)的双通道CNN滚动轴承故障诊断方法。首先,结合样本熵和皮尔逊相关系数,构建了新的综合适应度函数,利用麻雀算法(SSA)进行了自适应寻优,确定了最佳的变分模态分解(VMD)参数K和α。将原始振动信号经过VMD分解后,得到了本征模态函数(IMF)分量,通过计算各IMF分量的峭度值进行了筛选,将筛选出的信号进行重构后得到了一维特征信号;然后,根据互相关系数选择了合适的对称点模式(SDP)参数值,将原始振动信号转化为极坐标下的SDP图像,获得了具有良好可分性的二维特征图;最后,将一维和二维特征作为双通道CNN的输入进行了联合训练,将训练好的网络用于故障类型识别,在西储大学和江南大学的轴承数据集上对其有效性进行了验证。研究结果表明:通过网络训练,其故障诊断的准确率分别达到了98.5%和100%。该结果验证了该方法在准确识别故障特征方面具有优越性和普适性。
关键词
一
维
特征
信号构建
二维特征转换
卷积神经网络
麻雀算法
变分模态分解
对称点模式
Keywords
one-dimensional characteristic signal construction
two-dimensional feature transformation
convolutional neural network(CNN)
sparrow search algorithm(SSA)
variational mode decomposition(VMD)
symmetric dot patterns(SDP)
分类号
TH133.3 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SSA-VMD和SDP的双通道CNN轴承故障识别方法
蒋丽英
高铭悦
李贺
《机电工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部