研究了多输入多输出(multiple input multiple output,MIMO)雷达中的二维波达角(direction of arrival,DOA)估计问题,并提出了一种嵌套平行阵下基于子空间的二维DOA估计算法。利用存在嵌套关系的双平行阵(two parallel uniform linear a...研究了多输入多输出(multiple input multiple output,MIMO)雷达中的二维波达角(direction of arrival,DOA)估计问题,并提出了一种嵌套平行阵下基于子空间的二维DOA估计算法。利用存在嵌套关系的双平行阵(two parallel uniform linear array,TPULA)作为收发阵列,大大增加了自由度(degree of freedom,DOF)。在DOA估计方面,算法利用数据重构增加虚拟脉冲数,并利用酉变换降低运算复杂度,然后分别基于信号子空间和噪声子空间获得了自动配对的二维DOA估计的闭式解。算法复杂度低,而且相比MIMO雷达中传统TPULA下的算法,该算法拥有更好的角度估计性能,并可辨别空间相干目标。仿真结果验证了算法的有效性。展开更多
文摘研究了多输入多输出(multiple input multiple output,MIMO)雷达中的二维波达角(direction of arrival,DOA)估计问题,并提出了一种嵌套平行阵下基于子空间的二维DOA估计算法。利用存在嵌套关系的双平行阵(two parallel uniform linear array,TPULA)作为收发阵列,大大增加了自由度(degree of freedom,DOF)。在DOA估计方面,算法利用数据重构增加虚拟脉冲数,并利用酉变换降低运算复杂度,然后分别基于信号子空间和噪声子空间获得了自动配对的二维DOA估计的闭式解。算法复杂度低,而且相比MIMO雷达中传统TPULA下的算法,该算法拥有更好的角度估计性能,并可辨别空间相干目标。仿真结果验证了算法的有效性。
文摘研究单基地十字阵多输入多输出(multiple-input multiple-output,MIMO)雷达中目标二维角度参数估计的问题。已有的算法往往忽略了信源矩阵中的类Vandermonde结构,而这种特殊的结构可以提升参数估计精度。基于均匀线形阵列(uniform linear array,ULA)的中心对称特性和目标参数矩阵中的类Vandermonde结构,提出一种基于改进的三线性分解的二维角度估计算法。首先利用酉变换的方法构造阵列增广输出矩阵,再将二维角度估计与三线性模型相联系。由于增广输出使得阵列的虚拟孔径增大,因而本文所提算法的参数估计精度要优于传统三线性估计算法。此外,本文提及的改进算法不需进行谱峰搜索及奇异值分解,并且能对估计的二维目标角度自动配对,最后的仿真结果验证了本文算法的有效性。