Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensi...Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.展开更多
A two-dimensional numerical model was used to explain the liquefaction mechanism of double sand lenses and the corresponding soil deformation due to the cyclic loading. Moreover, in order to investigate the influences...A two-dimensional numerical model was used to explain the liquefaction mechanism of double sand lenses and the corresponding soil deformation due to the cyclic loading. Moreover, in order to investigate the influences of the soil characteristics and input loading data a parametric study was carried out on the essential parameters affecting the soil settlement, and so the variation of these parameters with the corresponding displacements was mainly examined. At last, the results obtained from the numerical analyses of double sand lenses and a continuous sand layer with similar characteristics were compared with those of an estimating method proposed by ISHIHARA and YOSHIMINE. The comparisons show that the settlements due to liquefaction of the continuous sand layer in both numerical and the estimating method are in a good agreement with and are obviously greater than those of double sand lenses.展开更多
A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input ...A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.展开更多
文摘Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.
文摘A two-dimensional numerical model was used to explain the liquefaction mechanism of double sand lenses and the corresponding soil deformation due to the cyclic loading. Moreover, in order to investigate the influences of the soil characteristics and input loading data a parametric study was carried out on the essential parameters affecting the soil settlement, and so the variation of these parameters with the corresponding displacements was mainly examined. At last, the results obtained from the numerical analyses of double sand lenses and a continuous sand layer with similar characteristics were compared with those of an estimating method proposed by ISHIHARA and YOSHIMINE. The comparisons show that the settlements due to liquefaction of the continuous sand layer in both numerical and the estimating method are in a good agreement with and are obviously greater than those of double sand lenses.
文摘A 2-D numerical model was developed to predict the shape of weld pool in stationary GTA welding of commercial pure aluminium, without considering fluid flow in the weld pool. A Gaussian current density and heat input distribution on the surface of the workpiece were considered. The parameters of Gaussian distribution were modified by comparing calculated results with experimental ones. It was found that these distribution parameters are fimctions of applied current and arc length. Effects of arc length, applied current and welding time on the geometry of the weld pool were investigated. To check the validity of the model, a series of experiments were also conducted. In general, the agreement between calculated overall shape of the weld pool and the experimental one was acceptable, especially in low applied currents. Therefore, it can be concluded that in pure aluminium, the heat conduction is dominant mechanism of heat transfer in the weld pool.