期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究
1
作者 柴永丰 陈敏 +4 位作者 郝彦龙 肖家清 邓蔚珂 吕凯 师鹏飞 《水文》 北大核心 2025年第3期17-24,共8页
城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立... 城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。 展开更多
关键词 城市内涝模拟 卷积神经网络(2dcnn) 机器学习 时空特征 快速预报
在线阅读 下载PDF
基于一维残差卷积神经网络的Pi2脉动识别模型 被引量:1
2
作者 张怡悦 邹自明 方少峰 《空间科学学报》 北大核心 2025年第1期66-81,共16页
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,... Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生,是构建Pi2脉动识别模型的关键.利用子午工程磁通门磁力仪观测的地磁场分量数据,基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network,1D-ResCNN),构建了一个端到端的Pi2脉动识别模型,用于判别某段地磁场分量观测数据中是否有Pi2脉动发生.实验结果表明,该模型与现有公开发表的Pi2脉动机器学习识别模型相比,具有更高的识别准确率和更低的虚报率、漏报率. 展开更多
关键词 Pi2脉动 Pi2脉动识别模型 残差卷积神经网络
在线阅读 下载PDF
基于二维卷积神经网络的结构加速度数据异常检测研究
3
作者 麻胜兰 钟建坤 +1 位作者 刘昱昊 郑翔 《建筑科学与工程学报》 北大核心 2025年第1期112-120,共9页
为提高结构加速度数据异常检测的效率和准确率,提出基于二维卷积神经网络(2D-CNN)的结构加速度数据异常检测方法。通过二维桁架数值模型验证了所提方法的有效性,并研究了2D-CNN卷积层数和加速度噪声水平对数据异常检测效果的影响。结果... 为提高结构加速度数据异常检测的效率和准确率,提出基于二维卷积神经网络(2D-CNN)的结构加速度数据异常检测方法。通过二维桁架数值模型验证了所提方法的有效性,并研究了2D-CNN卷积层数和加速度噪声水平对数据异常检测效果的影响。结果表明:提出的结构加速度数据异常检测方法能快速准确区分加速度数据异常类型,异常检测的准确率可达97%以上;对于包含信息复杂、数据规模大的样本,采用4层以上的2D-CNN有助于提高加速度数据异常检测的准确率,采用5层卷积层的2D-CNN对数据异常辨识精度可达98%;当加速度信噪比大于1时,数据异常检测准确率均在90%以上,当加速度信噪比为10时,准确率在97%以上,所提方法具有良好的容噪性和鲁棒性;采用2D-CNN的数据异常检测方法可为传感器网络的有效运行提供技术支持。 展开更多
关键词 结构健康监测 卷积神经网络 桁架结构 深度学习 加速度 数据异常检测
在线阅读 下载PDF
基于多维度傅里叶红外光谱与两种神经网络模型对昭通苹果的鉴别分析
4
作者 马殿旭 蔡彦 +4 位作者 李孝攀 程立君 杨海涛 单长吉 杜国芳 《光谱学与光谱分析》 北大核心 2025年第6期1543-1550,共8页
应用傅里叶红外光谱(FTIR)和二维相关红外光谱(2D-IR)对8种不同种类的昭通苹果进行分析,并运用卷积神经网络(CNN)和径向基函数(RBF)神经网络对其进行了鉴别。在8种昭通苹果的傅里叶红外光谱中,均在3500~2850、1650~1400和1250~800 cm^(... 应用傅里叶红外光谱(FTIR)和二维相关红外光谱(2D-IR)对8种不同种类的昭通苹果进行分析,并运用卷积神经网络(CNN)和径向基函数(RBF)神经网络对其进行了鉴别。在8种昭通苹果的傅里叶红外光谱中,均在3500~2850、1650~1400和1250~800 cm^(-1)等范围表现出了较强吸收峰,可以看出苹果含有丰富的糖类、维生素、氨基酸、脂质、有机酸、酚类和黄酮类等物质,且8种昭通苹果光谱非常相似,只在吸收峰的强弱和峰位置上有非常小的差异,依据光谱来区分鉴别8种昭通苹果,显然是不可能的。以温度为微扰,采集8种苹果的动态光谱,并对动态光谱800~1800 cm^(-1)进行2D-IR分析,在2D-IR的同步光谱中,可以清晰看出:随着温度的升高,2D-IR在1010和1642 cm^(-1)附近出现了相对较强的自动峰,说明苹果中的酯类、酸类和蛋白质出现一定的分解,而且酯类和酸类分解较强,蛋白质相对较弱;另外在8种样品的2D-IR中,红富士片红中的二维相关红外光谱中出现的自动峰1642 cm^(-1)相对其他样品来说是最强的自动峰,出现的负交叉峰(1006,1642 cm^(-1))最弱;在阿克苏苹果中只出现了1010 cm^(-1)一个强自动峰;在秦冠苹果中出现了三个自动峰;另外在2001苹果和新世纪苹果中,最强自动峰出现在1020 cm^(-1),对比其他苹果有10个波数的移动,依据2D-IR,可以区分部分苹果样品。进一步对8种苹果216个苹果光谱进行卷积神经网络(CNN)和径向基函数(RBF)神经网络分析,随机选择152个样品光谱数据进行模型训练,通过一定迭代和训练,使得两种模型在训练集上的分类准确率达到100%的最优状态,再对64个样品光谱进行预测,在CNN分析中准确率为89.06%,而在RBF神经网络分析中准确率达到90.6%,两种神经网络模型都表现出了非常好的分类准确率。因此FTIR、2D-IR、CNN和RBF神经网络分析方法在苹果分析鉴别研究中相互补充,可以对昭通苹果进行准确分类,并且该方法可以运用到其他物质分类鉴别分析。 展开更多
关键词 昭通苹果 傅里叶红外光谱(FTIR) 相关红外光谱(2D-IR) 神经网络分析模型 鉴别
在线阅读 下载PDF
基于二维卷积神经网络的BLDCM驱动系统故障检测方法 被引量:5
5
作者 孙权 于翔海 +2 位作者 李宏胜 黄家才 樊冀生 《电源学报》 CSCD 北大核心 2022年第1期180-187,共8页
针对无刷直流电机驱动系统功率开关管故障诊断存在由于特征提取效果差而导致识别准确率低等问题,提出一种基于二维卷积神经网络2D-CNN(two-dimensional convolution neural network)自适应特征提取的故障检测方法,避免人工提取特征的复... 针对无刷直流电机驱动系统功率开关管故障诊断存在由于特征提取效果差而导致识别准确率低等问题,提出一种基于二维卷积神经网络2D-CNN(two-dimensional convolution neural network)自适应特征提取的故障检测方法,避免人工提取特征的复杂性及不确定性。以相电流作为故障敏感信号进行FFT预处理,并将一维数据转换为矩阵形式作为2D-CNN的输入数据,然后利用Adam优化的softmax分类器对2D-CNN提取的故障特征进行分类,实现逆变器不同故障模式的状态识别。实验结果表明,2D-CNN模型在不同工况、不同故障模式下的故障诊断准确率均优于多层感知机MLP(multi-layer perceptron)和堆栈去噪自动编码器SDAE(stacked denoising auto encoder)方法。实验结果验证了所提方法的有效性和准确性,可为功率变换系统健康状态评估奠定理论基础。 展开更多
关键词 故障检测 自适应特征提取 卷积神经网络 无刷直流电机 逆变器
在线阅读 下载PDF
基于二维主成分分析与卷积神经网络的手写体汉字识别 被引量:10
6
作者 郑延斌 韩梦云 樊文鑫 《计算机应用》 CSCD 北大核心 2020年第8期2465-2471,共7页
随着计算能力的飞速增长、训练数据的不断积累以及非线性激活函数的不断完善,卷积神经网络(CNN)在手写体汉字识别中表现出较好的识别性能。针对CNN识别手写体汉字识别速度慢的问题,将二维主成分分析(2DPCA)与CNN相结合识别手写体汉字。... 随着计算能力的飞速增长、训练数据的不断积累以及非线性激活函数的不断完善,卷积神经网络(CNN)在手写体汉字识别中表现出较好的识别性能。针对CNN识别手写体汉字识别速度慢的问题,将二维主成分分析(2DPCA)与CNN相结合识别手写体汉字。首先,利用2DPCA提取手写体汉字的投影特征向量;然后,将得到的投影特征向量组成特征矩阵;其次,用组成的特征矩阵作为CNN的输入;最后,用Softmax函数进行分类。与基于AlexNet的CNN模型相比,所提方法的运行时间降低了78%,与基于ACNN与DCNN的模型相比,所提方法的运行时间分别降低了80%与73%。实验结果表明,该方法在不降低识别精度的同时,可以减少识别手写体汉字的运行时间。 展开更多
关键词 手写体汉字识别 深度学习 卷积神经网络 主成分分析 图像分类
在线阅读 下载PDF
融合注意力机制的二维卷积神经网络测井曲线重构方法 被引量:9
7
作者 翟晓岩 高刚 +3 位作者 李勇根 陈冬 桂志先 王之桢 《石油地球物理勘探》 EI CSCD 北大核心 2023年第5期1031-1041,共11页
密度和声波时差测井曲线是沟通地震与岩石物理学的两条重要曲线,也是目前仅有的能够为测井约束地震反演技术提供可靠的全频带地层弹性信息的两条测井曲线。但实际应用中受井壁垮塌、仪器故障等因素的影响,经常会造成密度和声波时差测井... 密度和声波时差测井曲线是沟通地震与岩石物理学的两条重要曲线,也是目前仅有的能够为测井约束地震反演技术提供可靠的全频带地层弹性信息的两条测井曲线。但实际应用中受井壁垮塌、仪器故障等因素的影响,经常会造成密度和声波时差测井数据失真或缺失,且现有的经验模型法、多元拟合法、岩石物理建模法不但存在着重构目标曲线精度低,而且较难处理两条曲线同时重构的问题。为此,提出了将注意力机制融合到二维卷积神经网络中,以强化深度学习网络捕捉测井曲线自相关和互相关特征信息的能力,提升深度学习网络重构声波和密度测井曲线的精度。以准噶尔盆地超深层致密砂岩为研究对象,首先分析了测井曲线自相关和互相关特征与注意力层权重分布规律的关系;然后分析对比了所提网络与门控循环单元、二维卷积神经网络的预测精度,并对所提网络结构参数进行了优化;最后通过合成地震记录验证了目标曲线校正和缺失重构效果,表明所提网络具有较高的预测精度。 展开更多
关键词 曲线重构 注意力机制 卷积神经网络 深度学习 声波测井 密度测井
在线阅读 下载PDF
应用二维相关近红外光谱特征建立蒙古栎弹性模量卷积神经网络预测模型 被引量:2
8
作者 吕俊霄 陈金浩 +1 位作者 张怡卓 王克奇 《东北林业大学学报》 CAS CSCD 北大核心 2022年第9期109-113,134,共6页
抗弯弹性模量是木材的主要力学性质,为了准确预测蒙古栎抗弯弹性模量,以蒙古栎为研究对象,应用卷积神经网络结合二维相关谱建立蒙古栎抗弯弹性模量预测模型。首先对原始光谱进行MSC-SG-FD预处理,解决散射光、平缓背景和高频噪声等,对预... 抗弯弹性模量是木材的主要力学性质,为了准确预测蒙古栎抗弯弹性模量,以蒙古栎为研究对象,应用卷积神经网络结合二维相关谱建立蒙古栎抗弯弹性模量预测模型。首先对原始光谱进行MSC-SG-FD预处理,解决散射光、平缓背景和高频噪声等,对预处理后的近红外光谱进行二维相关分析,然后采用卷积神经网络和二维同步相关谱进行建模,实现对。结果表明:利用卷积神经网络和二维同步相关谱建立的蒙古栎抗弯弹性模量的预测模型的决定系数为0.980 2,均方根误差为0.270 4;卷积神经网络模型预测的精度优于传统的PLS和BP模型,由于二维同步相关谱存在自相关峰,提高了蒙古栎抗弯弹性模量预测的精度。因此,卷积神经网络可利用经MSC-SG-FD预处理后的二维同步相关谱对蒙古栎抗弯弹性模量进行更为准确的预测。 展开更多
关键词 蒙古栎 抗弯弹性模量 MSC-SG-FD预处理 相关谱 卷积神经网络
在线阅读 下载PDF
基于二维图像与迁移卷积神经网络的心律失常分类 被引量:11
9
作者 陈敏 王娆芬 《计算机工程》 CAS CSCD 北大核心 2020年第10期315-320,共6页
心律失常的自动分类对心血管疾病的诊断和预防具有重要意义。传统分类方法需要对心电信号进行人工特征提取,这对分类准确度有很大的影响。针对该问题,提出一种基于二维图像与迁移卷积神经网络(TCNN)的分类方法。通过对心电信号进行格拉... 心律失常的自动分类对心血管疾病的诊断和预防具有重要意义。传统分类方法需要对心电信号进行人工特征提取,这对分类准确度有很大的影响。针对该问题,提出一种基于二维图像与迁移卷积神经网络(TCNN)的分类方法。通过对心电信号进行格拉姆角场变换将其转换为二维图像,在保证心电图像完整性的同时,保留原始信号的时间依赖性。在此基础上,结合迁移学习的思想,设计结构简单且参数量较少的TCNN模型对心电图像进行分类。实验结果表明,该方法网络训练用时较少,并且分类总准确率达到99.82%,可实现对心律失常的有效分类。 展开更多
关键词 心电信号 格拉姆角场 图像 迁移学习 迁移卷积神经网络
在线阅读 下载PDF
在单片机中应用卷积神经网络实现故障诊断 被引量:2
10
作者 张岷涛 廖文豪 卿朝进 《机械科学与技术》 CSCD 北大核心 2024年第2期282-290,共9页
作者利用深度神经网络进行滚动轴承的智能故障诊断(IFD),将人工智能在低成本小型化平台上实现了应用。作者在文章中优化改进了二维神经网络(CNN2D)的神经网络架构,并将其部署到STM32H743VI单片机,实现了轴承故障振动信号的识别和分类。... 作者利用深度神经网络进行滚动轴承的智能故障诊断(IFD),将人工智能在低成本小型化平台上实现了应用。作者在文章中优化改进了二维神经网络(CNN2D)的神经网络架构,并将其部署到STM32H743VI单片机,实现了轴承故障振动信号的识别和分类。网络的训练和验证使用凯斯西储大学(CWRU)轴承故障数据集,并获得其中的包含10种故障类型的数据。使用基于Tensorflow深度学习框架的Keras工具对CNN2D的神经网络进行训练。验证可知该改进模型对故障识别准确度可以达到98.90%。利用CubeAI工具将网络部署至单片机内。通过串口与电脑进行通信获取随机轴承数据,实测每次诊断运行时间为约为19 ms。 展开更多
关键词 故障诊断 卷积神经网络 滚动轴承 Keras
在线阅读 下载PDF
基于二维卷积神经网络的电阻抗成像算法 被引量:3
11
作者 赵少峰 李静 《仪表技术与传感器》 CSCD 北大核心 2022年第7期85-88,105,共5页
电阻抗成像技术(EIT)是一种非侵入、无辐射和成本低的成像技术。其逆问题求解时,传统的解决方法存在空间分辨率差的弊端。为此,提出了二维卷积神经网络(2DCNN)的解决方法。采用该方法,在有噪声和无噪声环境下,对不同形状、大小和位置的... 电阻抗成像技术(EIT)是一种非侵入、无辐射和成本低的成像技术。其逆问题求解时,传统的解决方法存在空间分辨率差的弊端。为此,提出了二维卷积神经网络(2DCNN)的解决方法。采用该方法,在有噪声和无噪声环境下,对不同形状、大小和位置的目标物体进行仿真,并且与Tikhonov和深度学习网络(DNN)算法进行了比较。仿真结果表明2DCNN方法可以有效地提取数据特征,重建的图像相对于其他方法伪影少、分辨率高、成像质量高、抗噪声能力强。 展开更多
关键词 电阻抗成像 逆问题 图像重建 卷积神经网络
在线阅读 下载PDF
基于改进型多维卷积神经网络的微动手势识别方法 被引量:7
12
作者 李玲霞 王羽 +1 位作者 吴金君 王沙沙 《计算机工程》 CAS CSCD 北大核心 2018年第9期243-249,共7页
传统二维卷积神经网络因遗漏时间维度信息导致不能识别微动手势。为此,提出一种基于视频流的微动手势识别方法。对输入视频流进行简单预处理,利用改进型多维卷积神经网络提取手势的时空特征,融合多传感器信息并通过支持向量机实现微动... 传统二维卷积神经网络因遗漏时间维度信息导致不能识别微动手势。为此,提出一种基于视频流的微动手势识别方法。对输入视频流进行简单预处理,利用改进型多维卷积神经网络提取手势的时空特征,融合多传感器信息并通过支持向量机实现微动手势识别。实验结果表明,该方法对手势的背景和光照都具有较好的鲁棒性,且针对各类动态手势数据集能达到87%以上的识别准确率。 展开更多
关键词 计算机视觉 手势识别 卷积神经网络 卷积神经网络 支持向量机 鲁棒性
在线阅读 下载PDF
增强边缘梯度二值卷积神经网络的人脸姿态识别 被引量:3
13
作者 周丽芳 高剑 《小型微型计算机系统》 CSCD 北大核心 2022年第5期1039-1045,共7页
为了提高人脸姿态识别的识别精度,设计了一种增强边缘梯度二值卷积神经网络用于识别.首先,提出ROILBC(Region of Interest Local Binary Convolution)在人脸姿态图像上提取二值特征并归类,根据二值特征图谱和原像的对比情况选择人脸姿... 为了提高人脸姿态识别的识别精度,设计了一种增强边缘梯度二值卷积神经网络用于识别.首先,提出ROILBC(Region of Interest Local Binary Convolution)在人脸姿态图像上提取二值特征并归类,根据二值特征图谱和原像的对比情况选择人脸姿态图像ROI(Region of Interest)以供后续网络学习.其次,提出DR-MGPC(Dimensionality Reduced Modified Gradient Pattern Convolution)提取图像边缘梯度二值特征,在此基础上,提出Enhanced DR-LDPC(Enhanced Dimensionality Reduced Local Directional Pattern Convolution)提取图像增强边缘梯度方向特征.网络采用直方图相似度、卡方检验、常态分布比对的巴氏距离法作为测量依据来进行识别;实验在FERET和CAS-PEAL-R1数据集上进行,相比其他人脸姿态识别方法,提出的二值模式卷积神经网络在识别精度和计算效率上更优异. 展开更多
关键词 值模式 卷积神经网络(CNN) 人脸姿态识别 感兴趣区域(ROI) 特征降
在线阅读 下载PDF
基于神经网络的二元混合液体自燃温度预测
14
作者 胡双启 郭丙宇 +1 位作者 程泽会 吴薇 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1710-1716,共7页
自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构性质关系方法,使用反向传播神经网络(Back Propagation Neural Ne... 自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构性质关系方法,使用反向传播神经网络(Back Propagation Neural Network,BPNN)和一维卷积神经网络(one-Dimensional Convolutional Neural Network,1DCNN)技术建立二元混合液体AIT预测模型。以二元混合液体的分子描述符为输入、试验测得的AIT为输出,经多种方法对模型的拟合性、稳定性和预测能力评价验证。结果表明,BPNN模型和1DCNN模型均有良好的预测能力,其均方根误差分别为4.780℃和9.603℃,拟合度与5折交叉验证拟合度差值分别为0.058和0.040,表明BPNN模型有更好的拟合能力,1DCNN模型有良好的稳定性。 展开更多
关键词 安全工程 反传播神经网络(BPNN) 卷积神经网络(1dcnn) 元混合液体 自燃温度
在线阅读 下载PDF
基于一维卷积神经网络的非侵入工业负荷事件检测方法 被引量:3
15
作者 余昊杨 武昕 《计算机应用》 CSCD 北大核心 2022年第S02期277-284,共8页
针对非侵入式工业负荷事件检测中准确率较低和漏检率较大的问题,提出了一种基于一维卷积神经网络(1D-CNN)的非侵入工业负荷事件检测方法。所提方法在1D-CNN模型中引入Inception-V2模型构建一维Inception-V2卷积神经网络(1D-Inception-V2... 针对非侵入式工业负荷事件检测中准确率较低和漏检率较大的问题,提出了一种基于一维卷积神经网络(1D-CNN)的非侵入工业负荷事件检测方法。所提方法在1D-CNN模型中引入Inception-V2模型构建一维Inception-V2卷积神经网络(1D-Inception-V2-CNN)模型,利用多种长度的滑动窗和对应的卷积核实现对数据的读取和压缩,利用1D-Inception-V2-CNN模型对压缩后的数据进行检测和分类,并通过自适应循环检测方法更新网络模型的检测样本库,最终实现对工业用户负荷数据的全面检测。在对实际工业用户的事件检测实验中,所提检测方法的准确率和Fscore分别达到了96.32%和95.42%,与LeNet一维卷积神经网络、二维卷积神经网络和滑动窗累积和算法相比均有明显的提升。实验结果表明,所提方法能够有效地提高工业事件检测的准确率,同时减小事件漏检率。 展开更多
关键词 工业负荷 非侵入式负荷监测 用电感知 事件检测 卷积神经网络 Inception-V2
在线阅读 下载PDF
深度神经网络和高光谱显微图像的二维材料纳米片识别 被引量:2
16
作者 彭仁苗 徐鹏鹏 +2 位作者 赵一默 包立君 李成 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第6期1965-1973,共9页
近年来,二维材料由于其独特的性质而受到了广泛关注。在制备二维层状晶体的各种方法中,机械剥离法获得的薄层二维材料晶体质量高,适用于基础研究及性能演示。然而用机械剥离法从衬底上获得的材料具有一定的随机性,可能包含了少许相对较... 近年来,二维材料由于其独特的性质而受到了广泛关注。在制备二维层状晶体的各种方法中,机械剥离法获得的薄层二维材料晶体质量高,适用于基础研究及性能演示。然而用机械剥离法从衬底上获得的材料具有一定的随机性,可能包含了少许相对较厚的部分。实现对这些二维薄层材料有效、快速且智能化的表征有利于促进二维材料性能的进一步研究。提出了一种基于深度学习的表征方法,通过搭建的编解码结构的卷积神经网络语义分割算法,可以根据光学显微镜图像进行分割和快速识别二维材料纳米片。卷积神经网络作为深度学习在图像处理领域中的典型算法,能够对光学显微镜图像中的复杂信息进行特征提取。首先采用机械剥离制备MoS_(2)纳米片样本,通过光学显微镜采集高光谱图像并对样本进行标记,根据样本的厚度范围标记出不同的区域,对标记后的图像进一步处理,包括图像的颜色校准和剪切操作,得到用于网络训练和测试的数据集。针对光学图像中二维纳米薄片存在的低对比度、碎裂等特点,编码时加入残差结构和金字塔池化模型,有助于特征信息的提取;解码时融合编码路径中提取的浅层特征信息,以提高网络分割精度。实验中采用带权重的交叉熵损失函数解决类别数量不平衡问题和采用数据增强扩大数据集。对训练后的网络测试结果表明,模型像素精度为97.38%,平均像素精度为90.38%,均交并比为75.86%。之后通过迁移学习成功地对剥离的单层和双层石墨烯纳米片样本进行了识别,均交并比达到了81.63%,表明该方法具有普适性。通过MoS_(2)和石墨烯纳米片的识别演示,实现了深度学习在二维材料的光学显微镜图像中的成功应用。该方法有望在更多的二维材料上得到扩展并突破自动动态处理光学显微镜图像的问题,同时为其他纳米材料的高光谱图像处理提供参考。 展开更多
关键词 材料 高光谱显微图像 卷积神经网络 金字塔模型 特征融合
在线阅读 下载PDF
基于卷积神经网络和火山岩大数据的构造源区判别 被引量:8
17
作者 葛粲 汪方跃 +3 位作者 顾海欧 管怀峰 李修钰 袁峰 《地学前缘》 EI CAS CSCD 北大核心 2019年第4期22-32,共11页
早先的构造源区判别图由于受时代、研究区域、研究思路以及研究手段、分析技术和样本数量的限制,存在某些不足,导致部分学者在研究中遇到各种困惑和矛盾。在大数据的冲击下,部分传统图解的可靠性正在接受考验。本文提出了一种将地球化... 早先的构造源区判别图由于受时代、研究区域、研究思路以及研究手段、分析技术和样本数量的限制,存在某些不足,导致部分学者在研究中遇到各种困惑和矛盾。在大数据的冲击下,部分传统图解的可靠性正在接受考验。本文提出了一种将地球化学数据二维图像化的方法,将GEOROC数据库中来自11个构造环境的火山岩数据生成了34 468张灰度二维码图像。根据深度学习理论和方法构造了卷积神经网络(CNN)模型,利用其中75%的二维码数据进行自动学习和训练。该模型可以对不同来源的火山岩数据进行有效分类,总体分类准确度可达95%以上。该模型具备较好的泛化能力,可以作为日常工具辅助人工进行火山岩样本的构造源区的判别。 展开更多
关键词 大数据 卷积神经网络 构造源区判别
在线阅读 下载PDF
基于小波变换和改进卷积神经网络的刚性罐道故障诊断 被引量:6
18
作者 杜菲 马天兵 +2 位作者 胡伟康 吕英辉 彭猛 《工矿自动化》 北大核心 2022年第9期42-48,62,共8页
现有刚性罐道故障诊断方法有的仅适用于小样本数据集,有的虽适用于大样本数据集,但忽略了实际工作环境中的多工况背景。基于卷积神经网络的刚性罐道故障诊断方法存在数据和运算量庞大,易产生过拟合等问题。针对上述问题,提出了一种基于... 现有刚性罐道故障诊断方法有的仅适用于小样本数据集,有的虽适用于大样本数据集,但忽略了实际工作环境中的多工况背景。基于卷积神经网络的刚性罐道故障诊断方法存在数据和运算量庞大,易产生过拟合等问题。针对上述问题,提出了一种基于小波变换和改进卷积神经网络的刚性罐道故障诊断方法。首先,在刚性罐道设置错位与间隙2种缺陷,采集多工况下提升容器振动加速度信号。其次,利用小波变换将采集的振动加速度信号转换为二维时频图像,采用试凑法最终确定经Complex Morlet小波基函数处理后的二维时频图像的时间和频率分辨率最佳。然后,通过改进卷积神经网络模型结构,即保留第1层和第5层池化层,将第2,3,4层池化层替换为小尺度卷积层,以防止过拟合现象。最后,将二维时频图像输入改进后的卷积神经网络模型。实验结果表明:①改进模型经过训练后,在训练集上的平均准确率为99%左右,在测试集上的平均准确率为99.5%。②当数据训练至200步后,改进模型的准确率达99%以上,改进模型的损失函数值趋近于0,说明改进模型收敛性能较好,模型的泛化能力得到了增强,在学习过程中对于过拟合的抑制效果明显。③在验证集混淆矩阵上,间隙缺陷和错位缺陷识别准确率为100%,无缺陷识别准确率为92%。④与EMD-SVD-SVM、小波包-SVM、EMD-SVD-BP神经网络、小波包-BP神经网络相比,基于小波变换和改进卷积神经网络的刚性罐道故障诊断方法准确率达99%。 展开更多
关键词 立井提升 刚性罐道 故障诊断 错位缺陷 间隙缺陷 小波变换 时频图像 卷积神经网络
在线阅读 下载PDF
考虑滚动轴承故障位置与损伤程度的双分支卷积神经网络故障诊断方法 被引量:16
19
作者 李中 卢春华 +1 位作者 王星 班双双 《科学技术与工程》 北大核心 2022年第4期1441-1448,共8页
针对现有深度学习方法对非平稳的滚动轴承故障诊断过程中,先验故障信息利用不充分和故障样本不完备,导致诊断精度不高甚至无法诊断的问题,充分发掘轴承故障位置和损伤程度与振动数据特征间的映射关系,提出一种考虑滚动轴承故障位置与损... 针对现有深度学习方法对非平稳的滚动轴承故障诊断过程中,先验故障信息利用不充分和故障样本不完备,导致诊断精度不高甚至无法诊断的问题,充分发掘轴承故障位置和损伤程度与振动数据特征间的映射关系,提出一种考虑滚动轴承故障位置与损伤程度的双分支卷积神经网络故障诊断方法。该方法首先将原始振动信号矩阵化,构建二维灰度图像数据集,然后建立双分支的改进VGGNet深度卷积网络,将故障位置与损伤程度进行双标签二值化,每个分支独立提取深层特征,实现故障位置和损伤程度特征与标签的自适应。仿真实验结果表明:相较其他深度学习方法,所提方法能够在部分先验知识缺失条件下,实现滚动轴承潜在的不同故障位置及损伤程度的多状态分类,获得较高准确率的同时兼具良好的抗噪性能。 展开更多
关键词 轴承故障诊断 灰度图 卷积神经网络 故障位置 损伤程度
在线阅读 下载PDF
基于卷积神经网络的智能找矿预测方法--以甘肃龙首山地区铜矿为例 被引量:12
20
作者 李忠潭 薛林福 +4 位作者 冉祥金 李永胜 董国强 李玉博 戴均豪 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2022年第2期418-433,共16页
智能找矿预测是数字地质科学的前沿领域.本文基于一种二维卷积神经网络的智能找矿预测方法,以25种元素的水系沉积物数据和航磁数据为找矿预测数据,将已知的矿点作为监督样本,利用步长平移数据增强方法获取了训练数据集,对卷积神经网络... 智能找矿预测是数字地质科学的前沿领域.本文基于一种二维卷积神经网络的智能找矿预测方法,以25种元素的水系沉积物数据和航磁数据为找矿预测数据,将已知的矿点作为监督样本,利用步长平移数据增强方法获取了训练数据集,对卷积神经网络进行训练后,将其应用于未知区域的找矿预测.应用该方法对甘肃省龙首山西段高台县臭泥墩—西小口子地区进行了铜矿智能找矿预测,根据已知的3个铜矿点,获取了22934个训练数据,经过200轮训练之后,预测精度能够达到98.1%,最终圈定了5个预测区,5个预测区均具有良好的铜矿找矿远景. 展开更多
关键词 卷积神经网络 数据增强 龙首山西段 铜矿 智能找矿预测
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部